Abstract
The glycolipid, phospholipid, pigment, and fatty acid content in whole y-1 cells during the greening process have been investigated. The time course of their changes indicates that phosphatidyl glycerol and glycolipids are the main lipids synthesized specifically during illumination of dark-grown cells, concomitant with an increase in the polyunsaturated C18:2 and C18:3 fatty acids. The pigment complex of light-grown cells consists mainly of chlorophylls a and b, lutein, β-carotene, violaxanthin, and neoxanthin. During the greening process, chlorophylls a and b are synthesized in constant proportions (ratio a/b equals 2.6), β-carotene and violaxanthin do not change significantly, and lutein and neoxanthin increase. The molar ratios of the different lipids and pigment to total chlorophyll during greening has been calculated. It was found that during the initial phase of greening when chlorophyll is synthesized at increasing rates, the molar ratios of various lipids and pigments to chlorophyll decrease and tend to become constant when chlorophyll and membrane synthesis proceed at constant rates. The implication of these findings with respect to the concept of membrane assembly through a spontaneous single step process is discussed
Full Text
The Full Text of this article is available as a PDF (514.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C. F., Good P., Davis H. F., Fowler S. D. Plant and chloroplast lipids. I. Separation and composition of major spinach lipids. Biochem Biophys Res Commun. 1964 Apr 22;15(5):424–430. doi: 10.1016/0006-291x(64)90479-6. [DOI] [PubMed] [Google Scholar]
- Appelqvist L. A., Boynton J. E., Henningsen K. W., Stumpf P. K., von Wettstein D. Lipid biosynthesis in chloroplast mutants of barley. J Lipid Res. 1968 Jul;9(4):513–524. [PubMed] [Google Scholar]
- Appelqvist L. A., Boynton J. E., Stumpf P. K., von Wettstein D. Lipid biosynthesis in relation to chloroplast development in barley. J Lipid Res. 1968 Jul;9(4):425–436. [PubMed] [Google Scholar]
- Boardman N. K., Highkin H. R. Studies on a barley mutant lacking chlorophyll b. I. Photochemical activity of isolated chloroplasts. Biochim Biophys Acta. 1966 Oct 10;126(2):189–199. doi: 10.1016/0926-6585(66)90054-9. [DOI] [PubMed] [Google Scholar]
- HULANICKA D., ERWIN J., BLOCH K. LIPID METABOLISM OF EUGLENA GRACILIS. J Biol Chem. 1964 Sep;239:2778–2787. [PubMed] [Google Scholar]
- Harris R. V., James A. T. Linoleic and alpha-linolenic acid biosynthesis in plant leaves and green alga. Biochim Biophys Acta. 1965 Dec 2;106(3):456–464. doi: 10.1016/0005-2760(65)90062-7. [DOI] [PubMed] [Google Scholar]
- Harris R. V., James A. T. The fatty acid metabolism of Chlorella vulgaris. Biochim Biophys Acta. 1965 Dec 2;106(3):465–473. doi: 10.1016/0005-2760(65)90063-9. [DOI] [PubMed] [Google Scholar]
- Hoober J. K., Siekevitz P., Palade G. E. Formation of chloroplast membranes in Chlamydomonas reinhardi y-1. Effects of inhibitors of protein synthesis. J Biol Chem. 1969 May 25;244(10):2621–2631. [PubMed] [Google Scholar]
- Hudock G. A., McLeod G. C., Moravkova-Kiely J., Levine R. P. The Relation of Oxygen Evolution to Chlorophyll and Protein Synthesis in a Mutant Strain of Chlamydomonas reinhardi. Plant Physiol. 1964 Nov;39(6):898–903. doi: 10.1104/pp.39.6.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRINSKY N. I. A RELATIONSHIP BETWEEN PARTITION COEFFICIENTS OF CAROTENOIDS AND THEIR FUNCTIONAL GROUPS. Anal Biochem. 1963 Oct;6:293–302. doi: 10.1016/0003-2697(63)90153-2. [DOI] [PubMed] [Google Scholar]
- Krinsky N. I., Levine R. P. Carotenoids of Wild Type and Mutant Strains of the Green Aiga, Chlamydomonas reinhardi. Plant Physiol. 1964 Jul;39(4):680–687. doi: 10.1104/pp.39.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARINETTI G. V. CHROMATOGRAPHY OF LIPIDS ON COMMERCIAL SILICA GEL LOADED FILTER PAPER. J Lipid Res. 1965 Apr;6:315–317. [PubMed] [Google Scholar]
- Nichols B. W. Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta. 1965 Oct 4;106(2):274–279. doi: 10.1016/0005-2760(65)90035-4. [DOI] [PubMed] [Google Scholar]
- Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):553–584. doi: 10.1083/jcb.35.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBERG A., PECKER M. LIPID ALTERATIONS IN EUGLENA GRACILIS CELLS DURING LIGHT-INDUCED GREENING. Biochemistry. 1964 Feb;3:254–258. doi: 10.1021/bi00890a019. [DOI] [PubMed] [Google Scholar]
- Roughan P. G., Batt R. D. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal Biochem. 1968 Jan;22(1):74–88. doi: 10.1016/0003-2697(68)90261-3. [DOI] [PubMed] [Google Scholar]
- STERN I., SHAPIRO B. A rapid and simple method for the determination of esterified fatty acids and for total fatty acids in blood. J Clin Pathol. 1953 May;6(2):158–160. doi: 10.1136/jcp.6.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuldiner S., Ohad I. Biogenesis of chloroplast membranes. 3. Light-dependent induction of proton pump activity in whole cells and its correlation to cytochrome f photooxidation during greening of a Chlamydomonas reinhardti mutant (y-I). Biochim Biophys Acta. 1969 May;180(1):165–177. doi: 10.1016/0005-2728(69)90203-5. [DOI] [PubMed] [Google Scholar]