Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Mar 1;44(3):618–634. doi: 10.1083/jcb.44.3.618

CHANGES IN CHEMICAL COMPOSITION OF THYLAKOID MEMBRANES DURING GREENING OF THE y-1 MUTANT OF CHLAMYDOMONAS REINHARDI

Benita De Petrocellis 1, Philip Siekevitz 1, George E Palade 1
PMCID: PMC2107972  PMID: 5415240

Abstract

Two fractions of thylakoid membranes (TMF) have been isolated from disrupted (French press) algal cells by using a discontinuous sucrose gradient. TMF-II consists mostly of thylakoid membranes still partially organized in grana; it contains also fragments of chloroplast envelope, pyrenoid tubules, and starch granules; thus it amounts to a fraction of chloroplast fragments which have lost practically all matrix components. TMF-I consists of smaller chloroplast fragments and is contaminated to a larger extent than TMF-II by other subcellular components, primarily mitochondria. TMF-II accounts for about 12% of the protein and 30% of the chlorophyll of the whole cell; it contains cytochrome 554 and carotenoids in the same ratio to chlorophyll as the latter, and shows photosystems I and II activities but lacks enzymatic activities characteristic of the dark reactions. During the greening of the y-1 mutant of Chlamydomonas, TMF's have been isolated over a range of chlorophyll concentrations from 5 to 25 µg/107 cells. The results showed that during this period the ratios of chlorophyll to cytochrome 554 and of chlorophyll to carotenoids, and the relative concentrations of individual carotenoids were continuously changing. The findings support the view that during greening, thylakoid membranes are produced by multistep assembly.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson A. A., Daniel H., Wiser R. A SULFOLIPID IN PLANTS. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1582–1587. doi: 10.1073/pnas.45.11.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boardman N. K., Anderson J. M. Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim Biophys Acta. 1967 Jul 5;143(1):187–203. doi: 10.1016/0005-2728(67)90120-x. [DOI] [PubMed] [Google Scholar]
  5. Gorman D. S., Levine R. P. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi. V. Purification and Properties of Cytochrome 553 and Ferredoxin. Plant Physiol. 1966 Dec;41(10):1643–1647. doi: 10.1104/pp.41.10.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoober J. K., Siekevitz P., Palade G. E. Formation of chloroplast membranes in Chlamydomonas reinhardi y-1. Effects of inhibitors of protein synthesis. J Biol Chem. 1969 May 25;244(10):2621–2631. [PubMed] [Google Scholar]
  7. JEFFREY S. W. Paper-chromatographic separation of chlorophylls and carotenoids from marine algae. Biochem J. 1961 Aug;80:336–342. doi: 10.1042/bj0800336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krinsky N. I., Levine R. P. Carotenoids of Wild Type and Mutant Strains of the Green Aiga, Chlamydomonas reinhardi. Plant Physiol. 1964 Jul;39(4):680–687. doi: 10.1104/pp.39.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Levine R. P. Genetic dissection of photosynthesis. Science. 1968 Nov 15;162(3855):768–771. doi: 10.1126/science.162.3855.768. [DOI] [PubMed] [Google Scholar]
  11. MARINETTI G. V. CHROMATOGRAPHY OF LIPIDS ON COMMERCIAL SILICA GEL LOADED FILTER PAPER. J Lipid Res. 1965 Apr;6:315–317. [PubMed] [Google Scholar]
  12. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):521–552. doi: 10.1083/jcb.35.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):553–584. doi: 10.1083/jcb.35.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SAN PIETRO A., LANG H. M. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958 Mar;231(1):211–229. [PubMed] [Google Scholar]
  15. SMILLIE R. M., LEVINE R. P. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. II. COMPONENTS OF THE TRIPHOSPHOPYRIDINE NUCLEOTIDE-REDUCTIVE PATHWAY IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4058–4062. [PubMed] [Google Scholar]
  16. Schuldiner S., Ohad I. Biogenesis of chloroplast membranes. 3. Light-dependent induction of proton pump activity in whole cells and its correlation to cytochrome f photooxidation during greening of a Chlamydomonas reinhardti mutant (y-I). Biochim Biophys Acta. 1969 May;180(1):165–177. doi: 10.1016/0005-2728(69)90203-5. [DOI] [PubMed] [Google Scholar]
  17. WINTERMANS J. F. Concentrations of phosphatides and glycolipids in leaves and chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:49–54. doi: 10.1016/0006-3002(60)91521-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES