Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Mar 1;44(3):655–666. doi: 10.1083/jcb.44.3.655

CYTOCHEMICAL LOCALIZATION OF ENDOGENOUS PEROXIDASE IN THYROID FOLLICULAR CELLS

Judy M Strum 1, Morris J Karnovsky 1
PMCID: PMC2107976  PMID: 4190069

Abstract

Endogenous peroxidase activity in rat thyroid follicular cells is demonstrated cytochemically. Following perfusion fixation of the thyroid gland, small blocks of tissue are incubated in a medium containing substrate for peroxidase, before being postfixed in osmium tetroxide, and processed for electron microscopy. Peroxidase activity is found in thyroid follicular cells in the following sites: (a) the perinuclear cisternae, (b) the cisternae of the endoplasmic reticulum, (c) the inner few lamellae of the Golgi complex, (d) within vesicles, particularly those found apically, and (e) associated with the external surfaces of the microvilli that project apically from the cell into the colloid. In keeping with the radioautographic evidence of others and the postulated role of thyroid peroxidase in iodination, it is suggested that the microvillous apical cell border is the major site where iodination occurs. However, that apical vesicles also play a role in iodination cannot be excluded. The in vitro effect of cyanide, aminotriazole, and thiourea is also discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER N. M., CORCORAN B. J. The reversible dissociation of thyroid iodide peroxidase into apoenzyme and prosthetic group. J Biol Chem. 1962 Jan;237:243–248. [PubMed] [Google Scholar]
  2. ALEXANDER N. M. Iodide peroxidase in rat thyroid and salivary glands and its inhibition by antithyroid compounds. J Biol Chem. 1959 Jun;234(6):1530–1533. [PubMed] [Google Scholar]
  3. ALEXANDER N. M. The mechanism of iodination reactions in thyroid glands. Endocrinology. 1961 Apr;68:671–679. doi: 10.1210/endo-68-4-671. [DOI] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DEGROOT L. J., DAVIS A. M. Studies on the biosynthesis of iodotyrosines: a soluble thyroidal iodide-peroxidase tyrosine-iodinase system. Endocrinology. 1962 Apr;70:492–504. doi: 10.1210/endo-70-4-492. [DOI] [PubMed] [Google Scholar]
  6. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  7. EKHOLM R., SJOSTRAND F. S. The ultrastructural organization of the mouse thyroid gland. J Ultrastruct Res. 1957 Dec;1(2):178–199. doi: 10.1016/s0022-5320(57)80006-9. [DOI] [PubMed] [Google Scholar]
  8. FAWCETT D. M., KIRKWOOD S. The mechanism of the antithyroid action of iodide ion and of the aromatic thyroid inhibitors. J Biol Chem. 1953 Oct;204(2):787–796. [PubMed] [Google Scholar]
  9. Fahimi H. D. Cytochemical localization of peroxidase activity in rat hepatic microbodies (peroxisomes). J Histochem Cytochem. 1968 Aug;16(8):547–550. doi: 10.1177/16.8.547. [DOI] [PubMed] [Google Scholar]
  10. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffith L. D., Bulger R. E., Trump B. F. The ultrastructure of the functioning kidney. Lab Invest. 1967 Feb;16(2):220–246. [PubMed] [Google Scholar]
  12. HOSOYA T., KONDO Y., UI N. Peroxidase activity in thyroid gland and partial purification of the enzyme. J Biochem. 1962 Sep;52:180–189. doi: 10.1093/oxfordjournals.jbchem.a127594. [DOI] [PubMed] [Google Scholar]
  13. Heimann P. Ultrastructure of human thyroid. A study of normal thyroid, untreated and treated diffuse toxic goiter. Acta Endocrinol (Copenh) 1966;53(Suppl):1+–1+. [PubMed] [Google Scholar]
  14. Hosoya T., Morrison M. A study of the hemoproteins of thyroid microsomes with emphasis on the thyroid peroxidase. Biochemistry. 1967 Apr;6(4):1021–1026. doi: 10.1021/bi00856a010. [DOI] [PubMed] [Google Scholar]
  15. Ito S. Structure and function of the glycocalyx. Fed Proc. 1969 Jan-Feb;28(1):12–25. [PubMed] [Google Scholar]
  16. KLEBANOFF S. J., YIP C., KESSLER D. The iodination of tyrosine by beef thyroid preparations. Biochim Biophys Acta. 1962 Apr 23;58:563–574. doi: 10.1016/0006-3002(62)90067-7. [DOI] [PubMed] [Google Scholar]
  17. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leduc E. H., Avrameas S., Bouteille M. Ultrastructural localization of antibody in differentiating plasma cells. J Exp Med. 1968 Jan 1;127(1):109–118. doi: 10.1084/jem.127.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lupulescu A., Andreani D., Andreoli M. Thyroglobulin: synthesis, iodination and hydrolysis. Folia Endocrinol. 1967 Aug;20(4):385–405. [PubMed] [Google Scholar]
  21. Miller F., Herzog V. Die Lokalisation von Peroxydase und saurer Phosphatase in eosinophilen Leukocyten während der Reifung. Elek. Elektronenmikroskopisch-cytochemische Untersuchungen am Knochenmark von Ratte und Kaninchen. Z Zellforsch Mikrosk Anat. 1969;97(1):84–110. [PubMed] [Google Scholar]
  22. NADLER N. J., YOUNG B. A., LEBLOND C. P., MITMAKER B. ELABORATION OF THYROGLOBULIN IN THE THYROID FOLLICLE. Endocrinology. 1964 Mar;74:333–354. doi: 10.1210/endo-74-3-333. [DOI] [PubMed] [Google Scholar]
  23. Neutra M., Leblond C. P. The Golgi apparatus. Sci Am. 1969 Feb;220(2):100–107. doi: 10.1038/scientificamerican0269-100. [DOI] [PubMed] [Google Scholar]
  24. Palade G. E. Structure and function at the cellular level. JAMA. 1966 Nov 21;198(8):815–825. [PubMed] [Google Scholar]
  25. SELLIN H. G., GOLDBERG I. H. BIOSYNTHESIS OF THYROGLOBULIN. 3. INTRACELLULAR LOCALIZATION AND PROPERTIES OF LABELED THYROID PROTEINS. J Biol Chem. 1965 Feb;240:774–781. [PubMed] [Google Scholar]
  26. STEIN O., GROSS J. METABOLISM OF 125-I IN THE THYROID GLAND STUDIES WITH ELECTRON MICROSCOPIC AUTORADIOGRAPHY. Endocrinology. 1964 Nov;75:787–798. doi: 10.1210/endo-75-5-787. [DOI] [PubMed] [Google Scholar]
  27. Seljelid R. Electron microscopic localization of acid phosphatase in rat thyroid follicle cells after stimulation with thyrotropic hormone. J Histochem Cytochem. 1965 Nov-Dec;13(8):687–690. doi: 10.1177/13.8.687. [DOI] [PubMed] [Google Scholar]
  28. Seljelid R. Endocytosis in thyroid follicle cells. I. Structure and significance of different types of single membrane-limited vacuoles and bodies. J Ultrastruct Res. 1967 Feb;17(3):195–219. doi: 10.1016/s0022-5320(67)80043-1. [DOI] [PubMed] [Google Scholar]
  29. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Venkatachalam M. A., Fahimi H. D. The use of beef liver catalase as a protein tracer for electron microscopy. J Cell Biol. 1969 Aug;42(2):480–489. doi: 10.1083/jcb.42.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WOLLMAN S. H., WODINSKY I. Localization of protein-bound I131 in the thyroid gland of the mouse. Endocrinology. 1955 Jan;56(1):9–20. doi: 10.1210/endo-56-1-9. [DOI] [PubMed] [Google Scholar]
  32. Werner S. C., Nauman J. A. The thyroid. Annu Rev Physiol. 1968;30:213–244. doi: 10.1146/annurev.ph.30.030168.001241. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES