Abstract
This study describes the nature and time-course of a swelling phase during the degeneration of unmyelinated nerve fibers, as observed in highly organized cultures of rodent sensory ganglia. Observations were made on nerve fascicles after they were cut and during nutritional deprivation. About 12 hr after nerve transection, large, clear vacuoles appear throughout fascicles distal to the cut. These vacuoles are most numerous at 24 hr and then gradually subside; after 48 hr, only small granules mark the severed fascicles. Electron microscopy shows that the vacuoles are, in fact, massive focal dilations of unmyelinated axons. Similar focal dilations in unmyelinated axons are observed if cultures are not refed for 5–7 days; under these conditions glucose concentrations fall below 20 mg/100 ml and degenerative changes begin to appear in neuronal somas. If the gas-tight assembly is opened and the culture refed, there is rapid disappearance of axonal dilations (usually within 1 hr) and recovery of many of the damaged neurons. Cooling (4°C) prevents this reversal, suggesting that an active process is involved. It is postulated that the swellings result from the failure of active axolemmal ion-pumping mechanisms prior to loss of selective permeability in the axon membrane. The reasons for the focal nature of the swellings is unknown. A literature review indicates that a phase of focal swelling has frequently been observed during the degeneration of unmyelinated nerve fibers in vivo.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachelard H. S., Silva G. D. The na+,K+-activated adenosine triphosphatase in degenerating peripheral nerve. Arch Biochem Biophys. 1966 Oct;117(1):98–105. doi: 10.1016/0003-9861(66)90131-7. [DOI] [PubMed] [Google Scholar]
- CHENG S. C. Metabolism of frog nerve during activity and recovery. J Neurochem. 1961 Aug;7:278–288. doi: 10.1111/j.1471-4159.1961.tb13514.x. [DOI] [PubMed] [Google Scholar]
- Chou S. M., Hartmann H. A. Electron microscopy of focal neuroaxonal lesions produced by beta-beta-iminodipropionitrile (IDPN) in rats. I. The advanced lesions. Acta Neuropathol. 1965 Jul 1;4(6):590–603. doi: 10.1007/BF00691211. [DOI] [PubMed] [Google Scholar]
- Crain S. M. Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol. 1966;9:1–43. doi: 10.1016/s0074-7742(08)60135-x. [DOI] [PubMed] [Google Scholar]
- Def Webster H., Ames A. REVERSIBLE AND IRREVERSIBLE CHANGES IN THE FINE STRUCTURE OF NERVOUS TISSUE DURING OXYGEN AND GLUCOSE DEPRIVATION. J Cell Biol. 1965 Sep 1;26(3):885–909. doi: 10.1083/jcb.26.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esterhuizen A. C., Spriggs T. L., Lever J. D. Axon beadings in autonomic cholinergic nerves. J Cell Biol. 1968 Aug;38(2):454–457. doi: 10.1083/jcb.38.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDE R. L. AXON SWELLINGS PRODUCED IN VIVO IN ISOLATED SEGMENTS OF NERVES. Acta Neuropathol. 1964 Jan 2;3:229–237. doi: 10.1007/BF00684398. [DOI] [PubMed] [Google Scholar]
- Freeman A. R., Reuben J. P., Brandt P. W., Grundfest H. Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons. J Gen Physiol. 1966 Nov;50(2):423–445. doi: 10.1085/jgp.50.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M. Membrane adenosine triphosphatase and cation transport. Br Med Bull. 1968 May;24(2):165–169. doi: 10.1093/oxfordjournals.bmb.a070620. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapeller K., Mayor D. An electron microscopic study of the early changes distal to a constriction in sympathetic nerves. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1026):53–63. doi: 10.1098/rspb.1969.0011. [DOI] [PubMed] [Google Scholar]
- LEE J. C. Electron microscopy of Wallerian degeneration. J Comp Neurol. 1963 Feb;120:65–79. doi: 10.1002/cne.901200107. [DOI] [PubMed] [Google Scholar]
- Lampert P. W. A comparative electron microscopic study of reactive, degenerating, regenerating, and dystrophic axons. J Neuropathol Exp Neurol. 1967 Jul;26(3):345–368. doi: 10.1097/00005072-196707000-00001. [DOI] [PubMed] [Google Scholar]
- Lasek R. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3-H]-L-leucine. Brain Res. 1968 Mar;7(3):360–377. doi: 10.1016/0006-8993(68)90003-6. [DOI] [PubMed] [Google Scholar]
- Masurovsky E. B., Bunge R. P. Fluoroplastic coverslips for long-term nerve tissue culture. Stain Technol. 1968 May;43(3):161–165. doi: 10.3109/10520296809115061. [DOI] [PubMed] [Google Scholar]
- McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANIEL E. J. PEASE DC: DEGENERATIVE CHANGES IN RAT DORSAL ROOTS DURING WALLERIAN DEGENERATION. J Ultrastruct Res. 1963 Dec;52:511–532. doi: 10.1016/s0022-5320(63)80082-9. [DOI] [PubMed] [Google Scholar]
- Oth D., Leclere M., Grignon G., Burg C. Maternal factor in the "hybrid effect" given by a spontaneous mammary carcinoma of C3H mice. Life Sci. 1968 Jun 15;7(12):599–603. doi: 10.1016/0024-3205(68)90081-7. [DOI] [PubMed] [Google Scholar]
- PETERSON E. R., MURRAY M. R. PATTERNS OF PERIPHERAL DEMYELIMINATION IN VITRO. Ann N Y Acad Sci. 1965 Mar 31;122:39–50. [PubMed] [Google Scholar]
- ROBERTSON J. D. The qnit membrane of cells and mechanisms of myelin formation. Res Publ Assoc Res Nerv Ment Dis. 1962;40:94–158. [PubMed] [Google Scholar]
- Roth C. D., Richardson K. C. Electron microscopical studies on axonal degeneration in the rat iris following ganglionectomy. Am J Anat. 1969 Mar;124(3):341–359. doi: 10.1002/aja.1001240305. [DOI] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
- Sabatini M. T., Dipolo R., Villegas R. Adenosine triphosphatase activity in the membranes of the squid nerve fiber. J Cell Biol. 1968 Jul;38(1):176–183. doi: 10.1083/jcb.38.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart M. A., Moonsammy G. I. Substrate changes in peripheral nerve recovering from anoxia. J Neurochem. 1966 Dec;13(12):1433–1439. doi: 10.1111/j.1471-4159.1966.tb04304.x. [DOI] [PubMed] [Google Scholar]
- TAXI J. Etude au microscope électronique de la dégénérescence wallérienne des fibres nerveuses amyéliniques. C R Hebd Seances Acad Sci. 1959 May 11;248(19):2796–2798. [PubMed] [Google Scholar]
- Villegas G. M., Villegas R. Ultrastructural studies of the squid nerve fibers. J Gen Physiol. 1968 May;51(5 Suppl):44S+–44S+. [PubMed] [Google Scholar]
- WEBSTER H. D. Transient, focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J Cell Biol. 1962 Feb;12:361–383. doi: 10.1083/jcb.12.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Harreveld A., Khattab F. I. Perfusion fixation with glutaraldehyde and post-fixation with osmium tetroxide for electron microscopy. J Cell Sci. 1968 Dec;3(4):579–594. doi: 10.1242/jcs.3.4.579. [DOI] [PubMed] [Google Scholar]