Abstract
Pinocytic activity in the adipose cell has been examined by measuring the uptake of colloidal gold. Pinocytic activity occurs in the isolated adipose cell under all experimental conditions; a portion of the vesicular elements of the cell can be identified by electron microscopy as pinocytic in origin. The isolated adipose cell appears to take up serum albumin by pinocytosis. Pinocytic activity in the isolated adipose cell is enhanced by epinephrine, but not by insulin. The relationship between pinocytosis and the metabolic activity of the adipose cell has been studied by measuring simultaneously the uptake of radioactive colloidal gold, the incorporation of 14C-counts from U-glucose-14C into CO2, total lipid, triglyceride glycerol and triglyceride fatty acids, and the release of nonesterified fatty acids in the absence of hormones and in the presence of insulin or epinephrine. Correlations between hormone-produced alterations in lipid metabolism and in pinocytic activity suggest that intracellular nonesterified fatty acid levels are a factor in the regulation of both the cell's pinocytic activity and its metabolism and that pinocytosis in the adipose cell functions in the extracellular-intracellular transport of nonesterified fatty acids.
Full Text
The Full Text of this article is available as a PDF (764.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARRNETT R. J., BALL E. G. Metabolic and ultrastructural changes induced in adipose tissue by insulin. J Biophys Biochem Cytol. 1960 Sep;8:83–101. doi: 10.1083/jcb.8.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bally P. R., Kappeler H., Froesch E. R., Labhart A. Effect of glucose on spontaneous limitation of lipolysis in isolated adipose tissue: a potential regulatory mechanism. Ann N Y Acad Sci. 1965 Oct 8;131(1):143–156. doi: 10.1111/j.1749-6632.1965.tb34785.x. [DOI] [PubMed] [Google Scholar]
- Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Benson B. The in vitro differentiation of mononuclear phagocytes. 3. The reversibility of granule and hydrolytic enzyme formation and the turnover of granule constituents. J Exp Med. 1965 Sep 1;122(3):455–466. doi: 10.1084/jem.122.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Fedorko M. E., Hirsch J. G. The in vitro differentiation of mononuclear phagocytes. V. The formation of macrophage lysosomes. J Exp Med. 1966 Apr 1;123(4):757–766. doi: 10.1084/jem.123.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Parks E. The regulation of pinocytosis in mouse macrophages. II. Factors inducing vesicle formation. J Exp Med. 1967 Feb 1;125(2):213–232. doi: 10.1084/jem.125.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A. The regulation of pinocytosis in mouse macrophages. I. Metabolic requirements as defined by the use of inhibitors. J Exp Med. 1966 Oct 1;124(4):557–571. doi: 10.1084/jem.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman S. W., Rizack M. A. Structure-function relationships in the adipose cell. 3. Effects of bovine serum albumin on the metabolism of glucose and the release of nonesterified fatty acids and glycerol by the isolated adipose cell. J Cell Biol. 1970 Aug;46(2):354–361. doi: 10.1083/jcb.46.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman S. W. Structure-function relationships in the adipose cell. I. Ultrastructure of the isolated adipose cell. J Cell Biol. 1970 Aug;46(2):326–341. doi: 10.1083/jcb.46.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenreich B. A., Cohn Z. A. The uptake and digestion of iodinated human serum albumin by macrophages in vitro. J Exp Med. 1967 Nov 1;126(5):941–958. doi: 10.1084/jem.126.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gosselin R. E. Kinetics of pinocytosis. Fed Proc. 1967 Jul-Aug;26(4):987–993. [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch J. G., Fedorko M. E., Cohn Z. A. Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J Cell Biol. 1968 Sep;38(3):629–632. doi: 10.1083/jcb.38.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JUNGAS R. L., BALL E. G. STUDIES ON THE METABOLISM OF ADIPOSE TISSUE. XVII. IN VITRO EFFECTS OF INSULIN UPON THE METABOLISM OF THE CARBOHYDRATE AND TRIGLYCERIDE STORES OF ADIPOSE TISSUE FROM FASTED-REFED RATS. Biochemistry. 1964 Nov;3:1696–1702. doi: 10.1021/bi00899a017. [DOI] [PubMed] [Google Scholar]
- JUNGAS R. L., BALL E. G. Studies on the metabolism of adipose tissue. XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry. 1963 Mar-Apr;2:383–388. doi: 10.1021/bi00902a035. [DOI] [PubMed] [Google Scholar]
- Jeanrenaud B. Adipose tissue dynamics and regulation, revisited. Ergeb Physiol. 1968;60:57–140. doi: 10.1007/BFb0107251. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAPOLITANO L. THE DIFFERENTIATION OF WHITE ADIPOSE CELLS. AN ELECTRON MICROSCOPE STUDY. J Cell Biol. 1963 Sep;18:663–679. doi: 10.1083/jcb.18.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pictet R., Jeanrenaud B., Orci L., Renold A., Rouiller C. Cellules adipeuses in situ et isolées. Essai de fixation pour la microscopie électronique. Z Gesamte Exp Med. 1968;148(4):255–274. [PubMed] [Google Scholar]
- Rodbell M. Metabolism of isolated fat cells. VI. The effects of insulin, lipolytic hormones, and theophylline on glucose transport and metabolism in "ghosts". J Biol Chem. 1967 Dec 25;242(24):5751–5756. [PubMed] [Google Scholar]
- Rodbell M. Modulation of lipolysis in adipose tissue by fatty acid concentration in fat cell. Ann N Y Acad Sci. 1965 Oct 8;131(1):302–314. doi: 10.1111/j.1749-6632.1965.tb34798.x. [DOI] [PubMed] [Google Scholar]
- Ryser H. J. Uptake of protein by mammalian cells: an underdeveloped area. The penetration of foreign proteins into mammalian cells can be measured and their functions explored. Science. 1968 Jan 26;159(3813):390–396. doi: 10.1126/science.159.3813.390. [DOI] [PubMed] [Google Scholar]
- Spector A. A., John K., Fletcher J. E. Binding of long-chain fatty acids to bovine serum albumin. J Lipid Res. 1969 Jan;10(1):56–67. [PubMed] [Google Scholar]
- Touabi M., Jeanrenaud B. Alpha-aminoisobutyric acid uptake in isolated mouse fat cells. Biochim Biophys Acta. 1969 Jan 28;173(1):128–140. doi: 10.1016/0005-2736(69)90043-1. [DOI] [PubMed] [Google Scholar]
- WASSERMANN F., McDONALD T. F. Electron microscopic study of adipose tissue (fat organs) with special reference to the transport of lipids between blood and fat cells. Z Zellforsch Mikrosk Anat. 1963;59:326–357. doi: 10.1007/BF00339791. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON J. R. ADIPOSE TISSUE. MORPHOLOGICAL CHANGES ASSOCIATED WITH LIPID MOBILIZATION. J Cell Biol. 1964 Jan;20:57–74. doi: 10.1083/jcb.20.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierler K. L., Rogus E., Klassen G. A., Rabinowitz D. Flux of palmitic acid across the adipose tissue membrane. Ann N Y Acad Sci. 1965 Oct 8;131(1):78–90. doi: 10.1111/j.1749-6632.1965.tb34780.x. [DOI] [PubMed] [Google Scholar]