Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Aug 1;46(2):267–289. doi: 10.1083/jcb.46.2.267

CYTOPLASMIC FILAMENTS OF AMOEBA PROTEUS

I. The Role of Filaments in Consistency Changes and Movement

Thomas D Pollard 1, Susumu Ito 1
PMCID: PMC2108024  PMID: 4915451

Abstract

The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0°C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22°C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50–70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50–70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50–70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN R. D., COOLEDGE J. W., HALL P. J. Streaming in cytoplasm dissociated from the giant amoeba, Chaos chaos. Nature. 1960 Sep 10;187:896–899. doi: 10.1038/187896a0. [DOI] [PubMed] [Google Scholar]
  2. Adelman M. R., Borisy G. G., Shelanski M. L., Weisenberg R. C., Taylor E. W. Cytoplasmic filaments and tubules. Fed Proc. 1968 Sep-Oct;27(5):1186–1193. [PubMed] [Google Scholar]
  3. Allen R. D., Francis D. W., Nakajima H. Cyclic birefringence changes in pseudopods of Chaos carolinensis revealing the localization of the motive force in pseudopod extension. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1153–1161. doi: 10.1073/pnas.54.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhowmick D. K. Electron microscopy of Trichamoeba villosa and amoeboid movement. Exp Cell Res. 1967 Mar;45(3):570–589. doi: 10.1016/0014-4827(67)90161-9. [DOI] [PubMed] [Google Scholar]
  5. Buckley I. K., Porter K. R. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–380. doi: 10.1007/BF01666538. [DOI] [PubMed] [Google Scholar]
  6. Chalkley H. W. STOCK CULTURES OF AMEBA. Science. 1930 Apr 25;71(1843):442–442. doi: 10.1126/science.71.1843.442. [DOI] [PubMed] [Google Scholar]
  7. Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
  8. Flickinger C. J. Mitochondrial polymorphism in Amoeba proteus. Protoplasma. 1968;66(1):139–150. doi: 10.1007/BF01252529. [DOI] [PubMed] [Google Scholar]
  9. GRIFFIN J. L. An improved mass culture method for the large, free-living amebae. Exp Cell Res. 1960 Oct;21:170–178. doi: 10.1016/0014-4827(60)90358-x. [DOI] [PubMed] [Google Scholar]
  10. HANSON J., HUXLEY H. E. Structural basis of the cross-striations in muscle. Nature. 1953 Sep 19;172(4377):530–532. doi: 10.1038/172530b0. [DOI] [PubMed] [Google Scholar]
  11. Hatano S., Kondo H., Miki-Noumura T. Purification of sea urchin egg actin. Exp Cell Res. 1969 May;55(2):275–277. doi: 10.1016/0014-4827(69)90492-3. [DOI] [PubMed] [Google Scholar]
  12. Hatano S., Tazawa M. Isolation, purification and characterization of byosin B from myxomycete plasmodium. Biochim Biophys Acta. 1968 Apr 9;154(3):507–519. doi: 10.1016/0005-2795(68)90011-1. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  14. KOMNICK H., WOHLFARTH-BOTTERMANN K. E. DAS GRUNDPLASMA UND DIE PLASMAFILAMENTE DER AMOEBE CHAOS CHAOS NACH ENZYMATISCHER BEHANDLUNG DER ZELLMEMBRAN. Z Zellforsch Mikrosk Anat. 1965 May 6;66(3):434–456. [PubMed] [Google Scholar]
  15. Kelly R. E., Rice R. V. Ultrastructural studies on the contractile mechanism of smooth muscle. J Cell Biol. 1969 Sep;42(3):683–694. doi: 10.1083/jcb.42.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NACHMIAS V. T. FIBRILLAR STRUCTURES IN THE CYTOPLASM OF CHAOS CHAOS. J Cell Biol. 1964 Oct;23:183–188. doi: 10.1083/jcb.23.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nachmias V. T. Further electron microscope studies on fibrillar organization of the ground cytoplasm of Chaos chaos. J Cell Biol. 1968 Jul;38(1):40–50. doi: 10.1083/jcb.38.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
  19. SIMARD-DUQUESNE N., COUILLARD P. Ameboid movement, I. Reactivation of glycerinated models of Amoeba proteus with adenosinetriphosphate. Exp Cell Res. 1962 Oct;28:85–91. doi: 10.1016/0014-4827(62)90314-2. [DOI] [PubMed] [Google Scholar]
  20. Schäfer-Danneel S. Strukturelle und funktionelle Voraussetzungen für die Bewegung von Amoeba proteus. Z Zellforsch Mikrosk Anat. 1967;78(4):441–462. [PubMed] [Google Scholar]
  21. THOMPSON C. M., WOLPERT L. THE ISOLATION OF MOTILE CYTOPLASM FROM AMOEBA PROTEUS. Exp Cell Res. 1963 Oct;32:156–160. doi: 10.1016/0014-4827(63)90078-8. [DOI] [PubMed] [Google Scholar]
  22. Tilney L. G., Gibbins J. R. Microtubules and filaments in the filopodia of the secondary mesenchyme cells of Arbacia punctulata and Echinarachnius parma. J Cell Sci. 1969 Jul;5(1):195–210. doi: 10.1242/jcs.5.1.195. [DOI] [PubMed] [Google Scholar]
  23. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
  25. Weihing R. R., Korn E. D. Ameba actin: the presence of 3-methylhistidine. Biochem Biophys Res Commun. 1969 Jun 27;35(6):906–912. doi: 10.1016/0006-291x(69)90710-4. [DOI] [PubMed] [Google Scholar]
  26. Wohlman A., Allen R. D. Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia. J Cell Sci. 1968 Mar;3(1):105–114. doi: 10.1242/jcs.3.1.105. [DOI] [PubMed] [Google Scholar]
  27. Wolpert L., Gingell D. Cell surface membrane and amoeboid movement. Symp Soc Exp Biol. 1968;22:169–198. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES