Abstract
The contractile response of turtle oviduct smooth muscle to acetylcholine after 30 min of incubation of muscles in Ca-free, 4 mM ethylene (bis) oxyethylenenitrilotetraacetic acid (EGTA) solutions at room temperature was greater than the contractile response after 30 min of incubation in the Ca-free medium at 37°C. Incubation in Ca-free solution at 37°C before stimulation with acetylcholine in Ca-free solutions at room temperature also reduced the contractile response, suggesting that activator calcium was lost from the fibers at a faster rate at higher temperatures. Electron micrographs of turtle oviduct smooth muscle revealed a sarcoplasmic reticulum (SR) occupying approximately 4% of the nucleus- and mitochondria-free cell volume. Incubation of oviduct smooth muscle with ferritin confirmed that the predominantly longitudinally oriented structures described as the SR did not communicate with the extracellular space. The SR formed fenestrations about the surface vesicles, and formed close contacts (couplings) with the surface membrane and surface vesicles in oviduct and vena caval smooth muscle; it is suggested that these are sites of electromechanical coupling. Calculation of the calcium requirements for smooth muscle contraction suggest that the amount of SR observed in the oviduct smooth muscle could supply the activator calcium for the contractions observed in Ca-free solutions. Incubation of oviduct smooth muscle in hypertonic solutions increased the electron opacity of the fibers. A new feature of some of the surface vesicles observed in oviduct, vena caval, and aortic smooth muscle was the presence of approximately 10 nm striations running approximately parallel to the openings of the vesicles to the extracellular space. Thick, thin, and intermediate filaments were observed in turtle oviduct smooth muscle, although the number of thick filaments seen in the present study appeared less than that previously found in mammalian smooth muscles.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSSON-CEDERGREN E., MUSCATELLO U. The participation of the sarcotubular system in glycogen metabolism. J Ultrastruct Res. 1963 Apr;8:391–401. doi: 10.1016/s0022-5320(63)90015-7. [DOI] [PubMed] [Google Scholar]
- AXELSSON J., THESLEFF S. Activation of the contractile mechanism in striated muscle. Acta Physiol Scand. 1958 Oct 28;44(1):55–66. doi: 10.1111/j.1748-1716.1958.tb01608.x. [DOI] [PubMed] [Google Scholar]
- Baskin R. J. Ultrastructure and calcium transport in crustacean muscle microsomes. J Cell Biol. 1971 Jan;48(1):49–60. doi: 10.1083/jcb.48.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batra S. C., Daniel E. E. Effect of multivalent cations and drugs on Ca uptake by the rat myometrial microsomes. Comp Biochem Physiol A Comp Physiol. 1971 Feb 1;38(2):285–300. doi: 10.1016/0300-9629(71)90055-7. [DOI] [PubMed] [Google Scholar]
- Bozler E. Control of the contractile mechanism of smooth and cardiac muscle. Am J Physiol. 1968 Aug;215(2):509–512. doi: 10.1152/ajplegacy.1968.215.2.509. [DOI] [PubMed] [Google Scholar]
- Bozler E. Role of calcium in initiation of activity of smooth muscle. Am J Physiol. 1969 Mar;216(3):671–674. doi: 10.1152/ajplegacy.1969.216.3.671. [DOI] [PubMed] [Google Scholar]
- CAESAR R., EDWARDS G. A., RUSKA H. Architecture and nerve supply of mammalian smooth muscle tissue. J Biophys Biochem Cytol. 1957 Nov 25;3(6):867–878. doi: 10.1083/jcb.3.6.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carsten M. E. Role of calcium binding by sarcoplasmic reticulum in the contraction and relaxation of uterine smooth muscle. J Gen Physiol. 1969 Apr;53(4):414–426. doi: 10.1085/jgp.53.4.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvalho A. P. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anesthetics. J Gen Physiol. 1968 Oct;52(4):622–642. doi: 10.1085/jgp.52.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornell R. Ultrastructural variants among peripheral vesicles and vacuoles of murine embryo cell strains. Exp Cell Res. 1970 Feb;59(2):177–185. doi: 10.1016/0014-4827(70)90589-6. [DOI] [PubMed] [Google Scholar]
- Devine C. E., Somlyo A. P. Thick filaments in vascular smooth muscle. J Cell Biol. 1971 Jun;49(3):636–649. doi: 10.1083/jcb.49.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANK G. B. Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle. J Physiol. 1962 Sep;163:254–268. doi: 10.1113/jphysiol.1962.sp006972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franzini-Armstrong C. STUDIES OF THE TRIAD : I. Structure of the Junction in Frog Twitch Fibers. J Cell Biol. 1970 Nov 1;47(2):488–499. doi: 10.1083/jcb.47.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
- ISOJIMA C., BOZLER E. ROLE OF CALCIUM IN INITIATION OF CONTRACTION IN SMOOTH MUSCLE. Am J Physiol. 1963 Oct;205:681–685. doi: 10.1152/ajplegacy.1963.205.4.681. [DOI] [PubMed] [Google Scholar]
- Knoth M., Pattillo R. A., Garancis J. C., Gey G. O., Ruckert A. C., Mattingly R. F. Ultrastructure and hormone synthesis of choriocarcinoma in vitro. Am J Pathol. 1969 Mar;54(3):479–488. [PMC free article] [PubMed] [Google Scholar]
- Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luciano L., Junger E., Reale E. Glykogen in glatten Muskelzellen der Gefässwand von Säugetieren. Elektronenmikroskopische und spektrophotometrische Untersuchungen. Histochemie. 1968;15(3):219–228. doi: 10.1007/BF00305886. [DOI] [PubMed] [Google Scholar]
- Manasek F. J. Myocardial cell death in the embryonic chick ventricle. J Embryol Exp Morphol. 1969 Apr;21(2):271–284. [PubMed] [Google Scholar]
- Murphy R. A. Arterial actomyosin: effects of pH and temperature on solubility and ATPase activity. Am J Physiol. 1971 May;220(5):1494–1500. doi: 10.1152/ajplegacy.1971.220.5.1494. [DOI] [PubMed] [Google Scholar]
- Page S. G. Fine structure of tortoise skeletal muscle. J Physiol. 1968 Aug;197(3):709–715. doi: 10.1113/jphysiol.1968.sp008583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- REVEL J. P., NAPOLITANO L., FAWCETT D. W. Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol. 1960 Dec;8:575–589. doi: 10.1083/jcb.8.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice R. V., McManus G. M., Devine O. F., Somlyo A. P. Regular organization of thick filaments in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):242–243. doi: 10.1038/newbio231242a0. [DOI] [PubMed] [Google Scholar]
- Rice R. V., Moses J. A., McManus G. M., Brady A. C., Blasik L. M. The organization of contractile filaments in a mammalian smooth muscle. J Cell Biol. 1970 Oct;47(1):183–196. doi: 10.1083/jcb.47.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandow A. Skeletal muscle. Annu Rev Physiol. 1970;32:87–138. doi: 10.1146/annurev.ph.32.030170.000511. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Devine C. E., Rice R. V. Aggregation of thick filaments into ribbons in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):243–246. doi: 10.1038/newbio231243a0. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Vascular smooth muscle. II. Pharmacology of normal and hypotensive vessels. Pharmacol Rev. 1970 Jun;22(2):249–353. [PubMed] [Google Scholar]
- Somlyo A. V., Somlyo A. P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther. 1968 Jan;159(1):129–145. [PubMed] [Google Scholar]
- Somlyo A. V., Vinall P., Somlyo A. P. Excitation-contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res. 1969 Oct;1(4):354–373. doi: 10.1016/0026-2862(69)90014-4. [DOI] [PubMed] [Google Scholar]
- Sommer J. R., Johnson E. A. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968 Mar;36(3):497–526. doi: 10.1083/jcb.36.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparrow M. P., Maxwell L. C., Ruegg J. C., Bohr D. F. Preparation and properties of a calcium ion-sensitive actomyosin from arteries. Am J Physiol. 1970 Nov;219(5):1366–1372. doi: 10.1152/ajplegacy.1970.219.5.1366. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Vye M. V., Fischman D. A. The morphological alteration of particulate glycogen by en bloc staining with uranyl acetate. J Ultrastruct Res. 1970 Nov;33(3):278–291. doi: 10.1016/s0022-5320(70)90022-5. [DOI] [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
- Wachsberger P., Kaldor G. Studies on uterine myosin A and actomyosin. Arch Biochem Biophys. 1971 Mar;143(1):127–137. doi: 10.1016/0003-9861(71)90192-5. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winegrad S. The intracellular site of calcium activaton of contraction in frog skeletal muscle. J Gen Physiol. 1970 Jan;55(1):77–88. doi: 10.1085/jgp.55.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]