Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Nov 1;47(2):525–530. doi: 10.1083/jcb.47.2.525

VITAMIN B12 AND THE MACROMOLECULAR COMPOSITION OF EUGLENA

Edgar F Carell 1, Pamela Leban Johnston 1, Alan R Christopher 1
PMCID: PMC2108092  PMID: 19866750

Full Text

The Full Text of this article is available as a PDF (326.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECK W. S., HOOK S., BARNETT B. H. The metabolic functions of vitamin B12. I. Distinctive modes of unbalanced growth behavior in Lactobacillus leichmannii. Biochim Biophys Acta. 1962 Apr 2;55:455–469. doi: 10.1016/0006-3002(62)90978-2. [DOI] [PubMed] [Google Scholar]
  2. BRAWERMAN G., EISENSTADT J. M. DEOXYRIBONUCLEIC ACID FROM THE CHLOROPLASTS OF EUGLENA GRACILIS. Biochim Biophys Acta. 1964 Nov 15;91:477–485. doi: 10.1016/0926-6550(64)90077-5. [DOI] [PubMed] [Google Scholar]
  3. BRAWERMAN G., POGO A. O., CHARGAFF E. Induced formation of ribonucleic acids and plastid protein in Euglena gracilis under the influence of light. Biochim Biophys Acta. 1962 Mar 5;55:326–334. doi: 10.1016/0006-3002(62)90787-4. [DOI] [PubMed] [Google Scholar]
  4. Beck W. S., Hardy J. Requirement of ribonucleotide reductase for cobamide coenzyme, a product of ribosomal activity. Proc Natl Acad Sci U S A. 1965 Jul;54(1):286–293. doi: 10.1073/pnas.54.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blakley R. L., Barker H. A. Cobamide stimulation of the reduction of ribotides to deoxyribotides in Lactobacillus leichmannii. Biochem Biophys Res Commun. 1964 Jul 27;16(5):391–397. doi: 10.1016/0006-291x(64)90363-8. [DOI] [PubMed] [Google Scholar]
  6. Carell E. F. Studies on chloroplast development and replication in Euglena. I. Vitamin B12 and chloroplast replication. J Cell Biol. 1969 May;41(2):431–440. doi: 10.1083/jcb.41.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EPSTEIN S. S., WEISS J. B., CAUSELEY D., BUSH P. Influence of vitamin B12 on the size and growth of Euglena gracilis. J Protozool. 1962 Aug;9:336–339. doi: 10.1111/j.1550-7408.1962.tb02630.x. [DOI] [PubMed] [Google Scholar]
  8. Edelman M., Cowan C. A., Epstein H. T., Schiff J. A. STUDIES OF CHLOROPLAST DEVELOPMENT IN EUGLENA, VIII. CHLOROPLAST-ASSOCIATED DNA. Proc Natl Acad Sci U S A. 1964 Nov;52(5):1214–1219. doi: 10.1073/pnas.52.5.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein H. T., Allaway E. Properties of selectively starved euglena. Biochim Biophys Acta. 1967 Jun 20;142(1):195–207. doi: 10.1016/0005-2787(67)90527-8. [DOI] [PubMed] [Google Scholar]
  10. Kempner E. S., Miller J. H. The molecular biology of Euglena gracilis. I. Growth conditions and cellular composition. Biochim Biophys Acta. 1965 Jun 15;104(1):11–17. doi: 10.1016/0304-4165(65)90214-x. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lark C. Studies on the in vivo methylation of DNA in Escherichia coli 15T. J Mol Biol. 1968 Feb 14;31(3):389–399. doi: 10.1016/0022-2836(68)90416-6. [DOI] [PubMed] [Google Scholar]
  13. Lindstrand K. Vitamin B12 derivatives in the human organism. Scand J Clin Lab Invest Suppl. 1967;95:3–6. [PubMed] [Google Scholar]
  14. PATAU K. Absorption microphotometry of irregular-shaped objects. Chromosoma. 1952;5(4):341–362. doi: 10.1007/BF01271492. [DOI] [PubMed] [Google Scholar]
  15. POLLISTER A. W. Photomultiplier apparatus for microspectrophotometry of cells. Lab Invest. 1952;1(1):106–114. [PubMed] [Google Scholar]
  16. Pogo B. G., Ubero I. R., Pogo A. O. Nucleic acid and protein content of Euglena gracilis in different growth media. Exp Cell Res. 1966 Apr;42(1):58–66. doi: 10.1016/0014-4827(66)90319-3. [DOI] [PubMed] [Google Scholar]
  17. REGE D. V., SREENIVASAN A. The influence of folic acid and vitamin B12 on nucleic acid metabolism in microorganisms. J Biol Chem. 1954 Sep;210(1):373–380. [PubMed] [Google Scholar]
  18. SHORTMAN K., LEHMAN I. R. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. VI. CHANGES IN ENZYME LEVELS IN RESPONSE TO ALTERATIONS IN PHYSIOLOGICAL STATE. J Biol Chem. 1964 Sep;239:2964–2974. [PubMed] [Google Scholar]
  19. SOLDO A. T. Vitamin B12 and nucleic acid production in Euglena. Arch Biochem Biophys. 1955 Mar;55(1):71–76. doi: 10.1016/0003-9861(55)90543-9. [DOI] [PubMed] [Google Scholar]
  20. Venkataraman S., Netrawali M. S., Sreenivasan A. The role of vitamin B12 in the metabolism of Euglena gracilis var. bacillaris. Biochem J. 1965 Aug;96(2):552–556. doi: 10.1042/bj0960552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WACKER W. E. Nucleic acids and metals. III. Changes in nucleic acid, protein, and metal content as a consequence of zinc deficiency in Euglena gracilis. Biochemistry. 1962 Sep;1:859–865. doi: 10.1021/bi00911a019. [DOI] [PubMed] [Google Scholar]
  22. WEBB J. M., LEVY H. B. A sensitive method for the determination of deoxyribonucleic acid in tissues and microorganisms. J Biol Chem. 1955 Mar;213(1):107–117. [PubMed] [Google Scholar]
  23. Walerych W. S., Venkataraman S., Johnson B. C. The methylation of transfer RNA by methyl cobamide. Biochem Biophys Res Commun. 1966 May 25;23(4):368–374. doi: 10.1016/0006-291x(66)90735-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES