Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Nov 1;47(2):332–351. doi: 10.1083/jcb.47.2.332

PROTONATION AND CHLOROPLAST MEMBRANE STRUCTURE

Satoru Murakami 1, Lester Packer 1
PMCID: PMC2108093  PMID: 19866735

Abstract

Light changes the structure of chloroplasts. This effect was investigated by high resolution electron microscopy, photometric methods, and chemical modification. (a) A reversible contraction of chloroplast membrane occurs upon illumination, dark titration with H+, or increasing osmolarity. These gross structural changes arise from a flattening of the thylakoids, with a corresponding decrease in the spacing between membranes. Microdensitometry showed that illumination or dark addition of H+ resulted in a 13–23% decrease in membrane thickness. Osmotically contracted chloroplasts do not show this effect. (b) Rapid glutaraldehyde fixation during actual experiments revealed that transmission changes are closely correlated with the spacing changes and therefore reflect an osmotic mechanism, whereas the light scattering changes have kinetics most similar to changes in membrane thickness or conformation. (c) Kinetic analysis of light scattering and transmission changes with the changes in fluorescence of anilinonaphthalene sulfonic acid bound to membranes revealed that fluorescence preceded light scattering or transmission changes. (d) It is concluded that the temporal sequence of events following illumination probably are protonation, changes in the environment within the membrane, change in membrane thickness, change in internal osmolarity accompanying ion movements with consequent collapse and flattening of thylakoid, change in the gross morphology of the inner chloroplast membrane system, and change in the gross morphology of whole chloroplasts.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANGHAM A. D. PHYSICAL STRUCTURE AND BEHAVIOR OF LIPIDS AND LIPID ENZYMES. Adv Lipid Res. 1963;1:65–104. doi: 10.1016/b978-1-4831-9937-5.50008-9. [DOI] [PubMed] [Google Scholar]
  2. Bryant F. D., Latimer P., Seiber B. A. Changes in total light scattering and absorption caused by changes in particle conformation--a test of theory. Arch Biochem Biophys. 1969 Dec;135(1):109–117. doi: 10.1016/0003-9861(69)90521-9. [DOI] [PubMed] [Google Scholar]
  3. Cassim J. Y., Yang J. T. Effect of molecular aggregation on circular dichroism and optical rotatory dispersion of helical poly-L-glutamic acid in solution. Biochem Biophys Res Commun. 1967 Jan 10;26(1):58–64. doi: 10.1016/0006-291x(67)90252-5. [DOI] [PubMed] [Google Scholar]
  4. Deamer D. W., Packer L. Correlation of ultrastructure with light-induced ion transport in chloroplasts. Arch Biochem Biophys. 1967 Mar;119(1):83–97. doi: 10.1016/0003-9861(67)90432-8. [DOI] [PubMed] [Google Scholar]
  5. Deamer D. W., Packer L. Light-dependent anion transport in isolated spinach chloroplasts. Biochim Biophys Acta. 1969 Apr 8;172(3):539–545. doi: 10.1016/0005-2728(69)90149-2. [DOI] [PubMed] [Google Scholar]
  6. Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
  7. ITOH M., IZAWA S., SHIBATA K. Disintegration of chloroplasts with dodecylbenzene sulfonate as measured by flattening effect and size distribution. Biochim Biophys Acta. 1963 Jan 1;69:130–142. doi: 10.1016/0006-3002(63)91232-0. [DOI] [PubMed] [Google Scholar]
  8. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karlish S. J., Avron M. Analysis of light-induced proton uptake in isolated chloroplasts. Biochim Biophys Acta. 1968 May 28;153(4):878–888. doi: 10.1016/0005-2728(68)90015-7. [DOI] [PubMed] [Google Scholar]
  10. Latimer P., Moore D. M., Bryant F. D. Changes in total light scattering and absorption caused by changes in particle conformation. J Theor Biol. 1968 Dec;21(3):348–367. doi: 10.1016/0022-5193(68)90120-3. [DOI] [PubMed] [Google Scholar]
  11. Lockshin A., Burris R. H. Solubilization and properties of chloroplast lamellar protein. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1564–1570. doi: 10.1073/pnas.56.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  13. Murakami S., Packer L. Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol. 1970 Mar;45(3):289–299. doi: 10.1104/pp.45.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murakami S., Packer L. Reversible changes in the conformation of thylakoid membranes accompanying chloroplast contraction or expansion. Biochim Biophys Acta. 1969 Jun 24;180(2):420–423. doi: 10.1016/0005-2728(69)90128-5. [DOI] [PubMed] [Google Scholar]
  15. NEUMANN J., JAGENDORF A. T. LIGHT-INDUCED PH CHANGES RELATED PHOSPHORYLATION BY CHLOROPLASTS. Arch Biochem Biophys. 1964 Jul;107:109–119. doi: 10.1016/0003-9861(64)90276-0. [DOI] [PubMed] [Google Scholar]
  16. Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
  17. PACKER L. STRUCTURAL CHANGES CORRELATED WITH PHOTOCHEMICAL PHOSPHORYLATION IN CHLOROPLAST MEMBRANES. Biochim Biophys Acta. 1963 Jul 23;75:12–22. doi: 10.1016/0006-3002(63)90574-2. [DOI] [PubMed] [Google Scholar]
  18. Packer L., Allen J. M., Starks M. Light-induced ion tranpsort in glutaraldehyde-fixed chloroplasts: studies with nigericin. Arch Biochem Biophys. 1968 Oct;128(1):142–152. doi: 10.1016/0003-9861(68)90017-9. [DOI] [PubMed] [Google Scholar]
  19. Packer L., Barnard A. C., Deamer D. W. Ultrastructural and Photometric Evidence for Light-Induced Changes in Chloroplast Structure in vivo. Plant Physiol. 1967 Feb;42(2):283–293. doi: 10.1104/pp.42.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shavit N., Avron M. The relation of electron transport and photophosphorylation to conformational changes in chloroplasts. Biochim Biophys Acta. 1967 May 9;131(3):516–525. doi: 10.1016/0005-2728(67)90011-4. [DOI] [PubMed] [Google Scholar]
  21. Siegenthaler P. A., Packer L. Light-dependent volume changes and reactions in chloroplasts. I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control. Plant Physiol. 1965 Sep;40(5):785–791. doi: 10.1104/pp.40.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  23. Sun S. F. The pH dependence of the reduced viscosity of modified serum albumins. Arch Biochem Biophys. 1969 Feb;129(2):411–415. doi: 10.1016/0003-9861(69)90196-9. [DOI] [PubMed] [Google Scholar]
  24. Yamashita K., Itoh M., Shibata K. Light-absorption and light-scattering changes during shrinking and swelling of chloroplasts. Biochim Biophys Acta. 1968 Nov 26;162(4):610–613. doi: 10.1016/0005-2728(68)90068-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES