Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Nov 1;47(2):408–422. doi: 10.1083/jcb.47.2.408

FACTORS CONTROLLING THE REASSEMBLY OF THE MICROVILLOUS BORDER OF THE SMALL INTESTINE OF THE SALAMANDER

Lewis G Tilney 1, Robert R Cardell Jr 1
PMCID: PMC2108096  PMID: 19866740

Abstract

Hydrostatic pressure, when applied to segments of the small intestine of the salamander, causes a tremendous reduction in number of microvilli and a loss of the terminal web. The intestinal epithelium strips off from its deeper layers at the level of the basement membrane. When the pressure is released and this epithelial sheet is allowed to recover, the microvilli and its terminal web reappear. Stages in the reformation of microvilli are described. In the earliest stages, foci of dense material seem to associate with the cytoplasmic surface of the apical plasma membrane. From this material, filaments appear and their regrowth is correlated with the extension of the microvilli. We suggest that the dense material nucleates the assembly of the filaments which, in turn, appear instrumental in the redevelopment of microvilli. This concept is supported by the existing literature. Further, since neither the microvilli nor the terminal web reappear on any surface but the apical surface, even though the apical and basal surfaces are bathed with the same medium, we suggest that information in the membrane itself or directly associated with the membrane dictates the distribution of the dense material which leads to the formation of the microvilli and ultimately to the polarity of the cell.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J. M. The role of the egg cortex in cephalopod development. Dev Biol. 1968 Aug;18(2):180–197. doi: 10.1016/0012-1606(68)90042-0. [DOI] [PubMed] [Google Scholar]
  2. CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURTIS A. S. Morphogenetic interactions before gastrulation in the amphibian, Xenopus laevis--the cortical field. J Embryol Exp Morphol. 1962 Sep;10:410–422. [PubMed] [Google Scholar]
  4. Cardell R. R., Jr, Badenhausen S., Porter K. R. Intestinal triglyceride absorption in the rat. An electron microscopical study. J Cell Biol. 1967 Jul;34(1):123–155. doi: 10.1083/jcb.34.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curran P. F. Ion transport in intestine and its coupling to other transport processes. Fed Proc. 1965 Sep-Oct;24(5):993–999. [PubMed] [Google Scholar]
  6. Elbers P. F. The primary action of lithium chloride on morphogenesis in Lymnaea stagnalis. J Embryol Exp Morphol. 1969 Nov;22(3):449–463. [PubMed] [Google Scholar]
  7. Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. doi: 10.1085/jgp.53.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hugon J., Borgers M. A direct lead method for the electron microscopic visualization of alkaline phosphatase activity. J Histochem Cytochem. 1966 May;14(5):429–431. doi: 10.1177/14.5.429. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  11. MARSLAND D. The mechanisms of cell division; temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J Cell Physiol. 1950 Oct;36(2):205–227. doi: 10.1002/jcp.1030360207. [DOI] [PubMed] [Google Scholar]
  12. MCNABB J. D., SANDBORN E. FILAMENTS IN THE MICROVILLOUS BORDER OF INTESTINAL CELLS. J Cell Biol. 1964 Sep;22:701–704. doi: 10.1083/jcb.22.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MILLER D., CRANE R. K. The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta. 1961 Sep 16;52:293–298. doi: 10.1016/0006-3002(61)90678-3. [DOI] [PubMed] [Google Scholar]
  14. Mukherjee T. M., Williams A. W. A comparative study of the ultrastructure of microvilli in the epithelium of small and large intestine of mice. J Cell Biol. 1967 Aug;34(2):447–461. doi: 10.1083/jcb.34.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. OVERTON J., SHOUP J. FINE STRUCTURE OF CELL SURFACE SPECIALIZATIONS IN THE MATURING DUODENAL MUCOSA OF THE CHICK. J Cell Biol. 1964 Apr;21:75–85. doi: 10.1083/jcb.21.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  17. Taylor A. C. Microtubules in the microspikes and cortical cytoplasm of isolated cells. J Cell Biol. 1966 Feb;28(2):155–168. doi: 10.1083/jcb.28.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Verdonk N. H. The effect of removing the polar lobe in centrifuged eggs of Dentalium. J Embryol Exp Morphol. 1968 Feb;19(1):33–42. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES