Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Nov 1;51(2):536–547. doi: 10.1083/jcb.51.2.536

EVIDENCE FOR CELL-SURFACE GLYCOSYLTRANSFERASES

Their Potential Role in Cellular Recognition

Stephen Roth 1, Edward J McGuire 1, Saul Roseman 1
PMCID: PMC2108125  PMID: 5165268

Abstract

Intact chicken embryo neural retina cells have been shown to catalyze the transfer of galactose-14C from uridine diphosphate galactose (UDP-galactose) to endogenous acceptors of high molecular weight as well as to exogenous acceptors. Four lines of evidence indicate that the galactosyltransferases catalyzing these reactions are at least partly located on the outside surface of the plasma membrane: (a) there is no evidence for appreciable uptake of sugar-nucleotides by vertebrate cells nor did unlabeled galactose, galactose 1-phosphate, or UDP-glucose interfere with the radioactivity incorporated during the reaction; (b) the cells remained essentially intact during the course of the reaction; (c) there was insufficient galactosyltransferase activity in the cell supernatants to account for the incorporation of galactose-14C into cell pellets; and (d) the intact cells could transfer galactose to acceptors of 106 daltons, and the product of this reaction was in the extracellular fluid. Appropriate galactosyl acceptors interfered with the adhesive specificity of neural retina cells; other compounds, which were not acceptors, had no effect. These results suggested that the transferase-acceptor complex may play a role in cellular recognition.

Full Text

The Full Text of this article is available as a PDF (770.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Den H., Kaufman B., Roseman S. Properties of some glycosyltransferases in embryonic chicken brain. J Biol Chem. 1970 Dec 25;245(24):6607–6615. [PubMed] [Google Scholar]
  2. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  3. Oppenheimer S. B., Edidin M., Orr C. W., Roseman S. An L-glutamine requirement for intercellular adhesion. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1395–1402. doi: 10.1073/pnas.63.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Roth S., McGuire E. J., Roseman S. An assay for intercellular adhesive specificity. J Cell Biol. 1971 Nov;51(21):525–535. doi: 10.1083/jcb.51.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES