Abstract
Cesium chloride centrifugation of DNA extracted from cells of blood strain Trypanosoma lewisi revealed a main band, ρ = 1.707, a light satellite, ρ = 1.699, and a heavy satellite, ρ = 1.721. Culture strain T. lewisi DNA comprised only a main band, ρ = 1.711, and a light satellite, ρ = 1.699. DNA isolated from DNase-treated kinetoplast fractions of both the blood and culture strains consisted of only the light satellite DNA. Electron microscope examination of rotary shadowed preparations of lysates revealed that DNA from kinetoplast fractions was mainly in the form of single 0.4 µ circular molecules and large masses of 0.4 µ interlocked circles with which longer, often noncircular molecules were associated. The 0.4 µ circular molecules were mainly in the covalently closed form: they showed a high degree of resistance to thermal denaturation which was lost following sonication; and they banded at a greater density than linear DNA in cesium chloride-ethidium bromide gradients. Interpretation of the large masses of DNA as comprising interlocked covalently closed 0.4 µ circles was supported by the findings that they banded with single circular molecules in cesium chloride-ethidium bromide gradients, and following breakage of some circles by mild sonication, they disappeared and were replaced by molecules made up of low numbers of apparently interlocked 0.4 µ circles. When culture strain cells were grown in the presence of either ethidium bromide or acriflavin, there was a loss of stainable kinetoplast DNA in cytological preparations. There was a parallel loss of light satellite and of circular molecules from DNA extracted from these cells.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
- Crawford L. V., Waring M. J. Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J Mol Biol. 1967 Apr 14;25(1):23–30. doi: 10.1016/0022-2836(67)90276-8. [DOI] [PubMed] [Google Scholar]
- DUBUY H. G., MATTERN C. F., RILEY F. L. ISOLATION AND CHARACTERIZATION OF DNA FROM KINETOPLASTS OF LEISHMANIA ENRIETTII. Science. 1965 Feb 12;147(3659):754–756. doi: 10.1126/science.147.3659.754. [DOI] [PubMed] [Google Scholar]
- Dawid I. B., Wolstenholme D. R. Renaturation and hybridization studies of mitochondrial DNA. Biophys J. 1968 Jan;8(1):65–81. doi: 10.1016/S0006-3495(68)86475-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawid I. B., Wolstenholme D. R. Ultracentrifuge and electron microscope studies on the structure of mitochondrial DNA. J Mol Biol. 1967 Sep 14;28(2):233–245. doi: 10.1016/s0022-2836(67)80006-8. [DOI] [PubMed] [Google Scholar]
- Dusanic D. G. Growth and immunologic studies on the culture forms of Trypanosoma lewisi. J Protozool. 1968 May;15(2):328–333. doi: 10.1111/j.1550-7408.1968.tb02131.x. [DOI] [PubMed] [Google Scholar]
- Freifelder D., Kleinschmidt A. K. Single-strand breaks in duplex DNA of coliphage T7 as demonstrated by electron microscopy. J Mol Biol. 1965 Nov;14(1):271–278. doi: 10.1016/s0022-2836(65)80246-7. [DOI] [PubMed] [Google Scholar]
- Guttman H. N., Eisenman R. N. Acriflavin-induced loss of kinetoplast deoxyribonucleic acid in Crithidia fasciculata (Culex pipiens strain). Nature. 1965 Sep 18;207(5003):1280–1281. doi: 10.1038/2071280a0. [DOI] [PubMed] [Google Scholar]
- HONIGBERG B. M., BALAMUTH W., BOVEE E. C., CORLISS J. O., GOJDICS M., HALL R. P., KUDO R. R., LEVINE N. D., LOEBLICH A. R., Jr, WEISER J. A REVISED CLASSIFICATION OF THE PHYLUM PROTOZOA. J Protozool. 1964 Feb;11:7–20. doi: 10.1111/j.1550-7408.1964.tb01715.x. [DOI] [PubMed] [Google Scholar]
- Hickson F. T., Roth T. F., Helinski D. R. Circular DNA forms of a bacterial sex factor. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1731–1738. doi: 10.1073/pnas.58.4.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson B., Vinograd J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature. 1967 Nov 18;216(5116):647–652. doi: 10.1038/216647a0. [DOI] [PubMed] [Google Scholar]
- KIMMEL J. R., SMITH E. L. Crystalline papain. I. Preparation, specificity, and activation. J Biol Chem. 1954 Apr;207(2):515–531. [PubMed] [Google Scholar]
- LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACHATTIE L. A., THOMAS C. A., Jr DNA FROM BACTERIOPHAGE LAMBDA: MOLECULAR LENGTH AND CONFORMATION. Science. 1964 May 29;144(3622):1142–1144. doi: 10.1126/science.144.3622.1142. [DOI] [PubMed] [Google Scholar]
- Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nass M. M. Mitochondrial DNA. II. Structure and physicochemical properties of isolated DNA. J Mol Biol. 1969 Jun 28;42(3):529–545. doi: 10.1016/0022-2836(69)90241-1. [DOI] [PubMed] [Google Scholar]
- PITELKA D. R. Observations on the kinetoplast-mitochondrion and the cytostome of Bodo. Exp Cell Res. 1961 Oct;25:87–93. doi: 10.1016/0014-4827(61)90309-3. [DOI] [PubMed] [Google Scholar]
- Radloff R., Bauer W., Vinograd J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci U S A. 1967 May;57(5):1514–1521. doi: 10.1073/pnas.57.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall J., Disbrey C. Evidence for the presence of DNA at basal body sites in Tetrahymena pyriformis. Proc R Soc Lond B Biol Sci. 1965 Jul 27;162(989):473–491. doi: 10.1098/rspb.1965.0051. [DOI] [PubMed] [Google Scholar]
- Riou G., Delain E. Abnormal circular DNA molecules induced by ethidium bromide in the kinetoplast of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1969 Oct;64(2):618–625. doi: 10.1073/pnas.64.2.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riou G., Delain E. Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of catenated forms. Proc Natl Acad Sci U S A. 1969 Jan;62(1):210–217. doi: 10.1073/pnas.62.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riou G., Paoletti C. Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi. J Mol Biol. 1967 Sep 14;28(2):377–382. doi: 10.1016/s0022-2836(67)80017-2. [DOI] [PubMed] [Google Scholar]
- Roth T. F., Helinski D. R. Evidence for circular DNA forms of a bacterial plasmid. Proc Natl Acad Sci U S A. 1967 Aug;58(2):650–657. doi: 10.1073/pnas.58.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- Simpson L. Effect of acriflavin on the kinetoplast of Leishmania tarentolae. Mode of action and physiological correlates of the loss of kinetoplast DNA. J Cell Biol. 1968 Jun;37(3):660–682. doi: 10.1083/jcb.37.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinert M., Van Assel S. The loss of kinetoplastic DNA in two species of Trypanosomatidae treated with acriflavine. J Cell Biol. 1967 Aug;34(2):489–503. doi: 10.1083/jcb.34.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAGER W., RUDZINSKA M. A. THE RIBOFLAVIN REQUIREMENT AND THE EFFECTS OF ACRIFLAVIN ON THE FINE STRUCTURE OF THE KINETOPLAST OF LEISHMANIA TARENTOLAE. J Protozool. 1964 Feb;11:133–145. doi: 10.1111/j.1550-7408.1964.tb01734.x. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinograd J., Lebowitz J. Physical and topological properties of circular DNA. J Gen Physiol. 1966 Jul;49(6):103–125. doi: 10.1085/jgp.49.6.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolstenholme D. R., Gross N. J. The form and size of mitochondrial DNA of the red bean, Phaseolus vulgaris. Proc Natl Acad Sci U S A. 1968 Sep;61(1):245–252. doi: 10.1073/pnas.61.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]