Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Dec 1;47(3):666–688. doi: 10.1083/jcb.47.3.666

THE ULTRASTRUCTURE OF THE NEXUS

A Correlated Thin-Section and Freeze-Cleave Study

N Scott McNutt 1, Ronald S Weinstein 1
PMCID: PMC2108148  PMID: 5531667

Abstract

A correlation is made between the appearances of the nexus ("gap junction") as revealed by thin-section and by freeze-cleave electron microscopy techniques. These methods reveal different aspects of a complex subunit assembly forming the nexus membranes. In thin sections, the nexus is formed by the very close apposition of two "unit" membranes. The electron-opaque tracer, colloidal lanthanum hydroxide, outlines an aspect of electron-lucent subunits that project into the central region of the nexus. The freeze-cleave technique demonstrates novel membrane faces that are generated from within the interior of plasma membranes by splitting them into two lamellae (Lm): Lm 1 adjacent to the cytoplasm, and Lm 2 adjacent to the extracellular space. Each of the two membranes forming the nexus can be split into these two lamellae. On the new face of Lm 1, particles approximately 50 A in diameter are closely packed in an array which is often hexagonal with a 90–100 A center-to-center spacing. The two apposed lamellae (Lm 2-Lm 2) of the nexus are constructed of sheets of subunits in a similar array. The Lm 1 particles appear to extend into the Lm 2 subunits to form macromolecular complexes. The Lm 2 subunits extend to the center of the nexus to form the contacts outlined by lanthanum in sections. It is postulated that central hydrophilic channels may extend through the subunit assembly to provide a direct route for intercellular communication.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr L., Berger W., Dewey M. M. Electrical transmission at the nexus between smooth muscle cells. J Gen Physiol. 1968 Mar;51(3):347–368. doi: 10.1085/jgp.51.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benedetti E. L., Emmelot P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J Cell Biol. 1968 Jul;38(1):15–24. doi: 10.1083/jcb.38.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bullivant S., Ames A., 3rd A simple freeze-fracture replication method for electron microscopy. J Cell Biol. 1966 Jun;29(3):435–447. doi: 10.1083/jcb.29.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. W., Branton D. Fracture faces in frozen outer segments from the guinea pig retina. Z Zellforsch Mikrosk Anat. 1968;91(4):586–603. doi: 10.1007/BF00455276. [DOI] [PubMed] [Google Scholar]
  6. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dewey M. M., Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962 Aug 31;137(3531):670–672. doi: 10.1126/science.137.3531.670-a. [DOI] [PubMed] [Google Scholar]
  8. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friederici H. H. The surface structure of some renal cell membranes. Lab Invest. 1969 Dec;21(6):459–471. [PubMed] [Google Scholar]
  11. Glaser M., Simpkins H., Singer S. J., Sheetz M., Chan S. I. On the interactions of lipids and proteins in the red blood cell membrane. Proc Natl Acad Sci U S A. 1970 Mar;65(3):721–728. doi: 10.1073/pnas.65.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HALL C. E. Measurement of globular protein molecules by electron microscopy. J Biophys Biochem Cytol. 1960 Jul;7:613–618. doi: 10.1083/jcb.7.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackemann M., Grubb C., Hill K. R. The ultrastructure of normal squamous epithelium of the human cervix uteri. J Ultrastruct Res. 1968 Mar;22(5):443–457. doi: 10.1016/s0022-5320(68)90033-6. [DOI] [PubMed] [Google Scholar]
  15. KARRER H. E. Cell interconnections in normal human cervical epithelium. J Biophys Biochem Cytol. 1960 Feb;7:181–184. doi: 10.1083/jcb.7.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KARRER H. E. The striated musculature of blood vessels. II. Cell interconnections and cell surface. J Biophys Biochem Cytol. 1960 Sep;8:135–150. doi: 10.1083/jcb.8.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawamura K., Konishi T. Ultrastructure of the cell junction of heart muscle with special reference to its functional significance in excitation conduction and to the concept of "disease of intercalated disc". Jpn Circ J. 1967 Nov;31(11):1533–1543. [PubMed] [Google Scholar]
  19. Korn E. D. Structure of biological membranes. Science. 1966 Sep 23;153(3743):1491–1498. doi: 10.1126/science.153.3743.1491. [DOI] [PubMed] [Google Scholar]
  20. Kriebel M. E. Electrical characteristics of tunicate heart cell membranes and nexuses. J Gen Physiol. 1968 Jul;52(1):46–59. doi: 10.1085/jgp.52.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lessin L. S., Jensen W. N., Ponder E. Molecular mechanism of hemolytic anemia in homozygous hemoglobin C disease. Electron microscopic study by the freeze-etching technique. J Exp Med. 1969 Sep 1;130(3):443–466. doi: 10.1084/jem.130.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
  24. MOOR H., MUHLETHALER K., WALDNER H., FREY-WYSSLING A. A new freezing-ultramicrotome. J Biophys Biochem Cytol. 1961 May;10:1–13. doi: 10.1083/jcb.10.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MUIR A. R. FURTHER OBSERVATIONS ON THE CELLULAR STRUCTURE OF CARDIAC MUSCLE. J Anat. 1965 Jan;99:27–46. [PMC free article] [PubMed] [Google Scholar]
  26. McNutt N. S. Ultrastructure of intercellular junctions in adult and developing cardiac muscle. Am J Cardiol. 1970 Feb;25(2):169–183. doi: 10.1016/0002-9149(70)90577-1. [DOI] [PubMed] [Google Scholar]
  27. Misra D. N., Das Gupta N. N. Distortion in dimensions produced by shadowing for electron microscopy. J R Microsc Soc. 1965 Sep;84(3):373–384. [PubMed] [Google Scholar]
  28. Moor H. Use of freeze-etching in the study of biological ultrastructure. Int Rev Exp Pathol. 1966;5:179–216. [PubMed] [Google Scholar]
  29. Muir A. R. The effects of divalent cations on the ultrastructure of the perfused rat heart. J Anat. 1967 Apr;101(Pt 2):239–261. [PMC free article] [PubMed] [Google Scholar]
  30. Park R. B., Pfeifhofer A. O. The effect of ethylenediaminetetra-acetate washing on the structure of spinach thylakoids. J Cell Sci. 1969 Jul;5(1):313–319. doi: 10.1242/jcs.5.1.313. [DOI] [PubMed] [Google Scholar]
  31. Park R. B., Pfeifhofer A. O. Ultrastructural observations on deep-etched thylakoids. J Cell Sci. 1969 Jul;5(1):299–311. doi: 10.1242/jcs.5.1.299. [DOI] [PubMed] [Google Scholar]
  32. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  33. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  36. Rayns D. G., Simpson F. O., Bertaud W. S. Surface features of striated muscle. I. Guinea-pig cardiac muscle. J Cell Sci. 1968 Dec;3(4):467–474. doi: 10.1242/jcs.3.4.467. [DOI] [PubMed] [Google Scholar]
  37. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
  39. Sommer J. R., Johnson E. A. Comparative ultrastructure of cardiac cell membrane specializations. A review. Am J Cardiol. 1970 Feb;25(2):184–194. doi: 10.1016/0002-9149(70)90578-3. [DOI] [PubMed] [Google Scholar]
  40. Staehelin L. A. The interpretation of freeze-etched artificial and bilogical membranes. J Ultrastruct Res. 1968 Feb;22(3):326–347. doi: 10.1016/s0022-5320(68)90025-7. [DOI] [PubMed] [Google Scholar]
  41. Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wehrli E., Mühlethaler K., Moor H. Membrane structure as seen with a double replica method for freeze fracturing. Exp Cell Res. 1970 Feb;59(2):336–339. doi: 10.1016/0014-4827(70)90609-9. [DOI] [PubMed] [Google Scholar]
  43. Weidmann S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol. 1966 Nov;187(2):323–342. doi: 10.1113/jphysiol.1966.sp008092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weinstein R. S., Clowes A. W., McNutt N. S. Unique cleavage planes in frozen red cell membranes. Proc Soc Exp Biol Med. 1970 Sep;134(4):1195–1198. doi: 10.3181/00379727-134-34973. [DOI] [PubMed] [Google Scholar]
  45. Weinstein R. S., McNutt N. S. Ultrastructure of red cell membranes. Semin Hematol. 1970 Jul;7(3):259–274. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES