Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Dec 1;47(3):568–576. doi: 10.1083/jcb.47.3.568

THE EFFECTS OF HIGH HYDROSTATIC PRESSURE ON THE MICROTUBULES OF TETRAHYMENA PYRIFORMIS

John R Kennedy 1, Arthur M Zimmerman 1
PMCID: PMC2108149  PMID: 5497538

Abstract

Exposure of Tetrahymena pyriformis to 7,500 or 10,000 psi of hydrostatic pressure for 2, 5, or 10 min intervals results in a change in cell shape and ciliary activity. Shape changes occur concurrently with a degradation of longitudinal microtubules in a posterior to anterior direction. High pressure also causes a disruption of ciliary activity. Fine structural analysis reveals a breakdown (presumably microtubule depolymerization) of the central ciliary microtubules. The depolymerization begins at the junction of the central ciliary microtubules with the axosome and progresses distally along the ciliary shaft for a distance of about 0.5 µ.

Full Text

The Full Text of this article is available as a PDF (929.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTERITA H., MARSLAND D. The pellicle as a factor in the stabilization of cellular form and integrity: effects of externally applied enzymes on the resistance of Blepharisma and Paramecium to pressure-induced cytolysis. J Cell Comp Physiol. 1961 Aug;58:49–61. doi: 10.1002/jcp.1030580107. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. J Protozool. 1967 Nov;14(4):553–565. doi: 10.1111/j.1550-7408.1967.tb02042.x. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
  5. Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
  6. Kennedy J. R., Jr, Brittingham E. Fine structure changes during chloral hydrate deciliation of Paramecium caudatum. J Ultrastruct Res. 1968 Mar;22(5):530–545. doi: 10.1016/s0022-5320(68)90039-7. [DOI] [PubMed] [Google Scholar]
  7. LANDAU J. V., THIBODEAU L. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Exp Cell Res. 1962 Sep;27:591–594. doi: 10.1016/0014-4827(62)90027-7. [DOI] [PubMed] [Google Scholar]
  8. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MARSLAND D. The mechanisms of cell division; temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J Cell Physiol. 1950 Oct;36(2):205–227. doi: 10.1002/jcp.1030360207. [DOI] [PubMed] [Google Scholar]
  10. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shelanski M. L., Taylor E. W. Isolation of a protein subunit from microtubules. J Cell Biol. 1967 Aug;34(2):549–554. doi: 10.1083/jcb.34.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shelanski M. L., Taylor E. W. Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella. J Cell Biol. 1968 Aug;38(2):304–315. doi: 10.1083/jcb.38.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tilney L. G., Byers B. Studies on the microtubules in heliozoa. V. Factors controlling the organization of microtubules in the Axonemal pattern in Echinosphaerium (Actinosphaerium) nucleofilum. J Cell Biol. 1969 Oct;43(1):148–165. doi: 10.1083/jcb.43.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilney L. G., Gibbins J. R. Differential effects of antimitotic agents on the stability and behavior of cytoplasmic and ciliary microtubules. Protoplasma. 1968;65(1):167–179. doi: 10.1007/BF01666377. [DOI] [PubMed] [Google Scholar]
  15. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tilney L. G. Studies on the microtubules in heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia and the redevelopment of pattern in Actinosphaerium nucleofilum (Barrett). J Cell Sci. 1968 Dec;3(4):549–562. doi: 10.1242/jcs.3.4.549. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES