Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Dec 1;47(3):585–592. doi: 10.1083/jcb.47.3.585

QUANTITATIVE ASPECTS OF TRANSMITTER RELEASE

George D Bittner 1, Donald Kennedy 1
PMCID: PMC2108152  PMID: 5497540

Abstract

The opener-stretcher motor neuron in crayfish makes 50 endings upon each of 1200 muscle fibers. We have calculated the quantal content of junctional potentials produced by individual terminals and by the whole cell at various physiological frequencies. The results show that when the motor neuron is active at 20 impulses/second, it releases 50 quanta/impulse per muscle fiber, or a total of 4.5 x 109 quanta/hr. These figures are similar to those for vertebrate muscles per fiber, but larger for the entire neuron because the opener motor unit is so large. On the basis that the quanta correspond to synaptic vesicles each containing 103–104 molecules of transmitter, the release rate must be around 10-11 mole/hr. This value is within an order of magnitude of the release figures obtained for mammalian neurons by collecting transmitter in perfusates, but it is far lower than the value reported for a crustacean inhibitory neuron. If the membrane materials surrounding each vesicle were lost in the release process, the replacement synthesis would involve 24 mm2 of membrane/hr. We conclude that the metabolic load in terms of transmitter synthesis is probably sustainable, but that the release mechanism must operate in such a way that vesicle membrane materials are neither lost nor incorporated into the terminal membrane.

Full Text

The Full Text of this article is available as a PDF (561.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aidley D. J. A suggestion regarding the cellular basis of learning. J Theor Biol. 1966 Jul;11(2):343–345. doi: 10.1016/0022-5193(66)90171-8. [DOI] [PubMed] [Google Scholar]
  2. Atwood H. L., Jones A. Presynaptic inhibition in crustacean muscle: axo-axonal synapse. Experientia. 1967 Dec 15;23(12):1036–1038. doi: 10.1007/BF02136434. [DOI] [PubMed] [Google Scholar]
  3. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bittner G. D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J Gen Physiol. 1968 Jun;51(6):731–758. doi: 10.1085/jgp.51.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DEL CASTILLO J., KATZ B. Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem. 1956;6:121–170. [PubMed] [Google Scholar]
  7. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DUDEL J., KUFFLER S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:543–562. doi: 10.1113/jphysiol.1961.sp006646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DUDEL J., KUFFLER S. W. The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:514–529. doi: 10.1113/jphysiol.1961.sp006644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eagle H., Washington C. L., Levy M. End product control of amino acid synthesis by cultured human cells. J Biol Chem. 1965 Oct;240(10):3944–3950. [PubMed] [Google Scholar]
  11. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  12. FEINSTEIN B., LINDEGARD B., NYMAN E., WOHLFART G. Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 1955;23(2):127–142. doi: 10.1159/000140989. [DOI] [PubMed] [Google Scholar]
  13. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  14. Hubbard J. I., Kwanbunbumpen S. Evidence for the vesicle hypothesis. J Physiol. 1968 Feb;194(2):407–420. doi: 10.1113/jphysiol.1968.sp008415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KATZ B. Microphysiology of the neuromuscular junction; a physiological quantum of action at the myoeneural junction. Bull Johns Hopkins Hosp. 1958 Jun;102(6):275–295. [PubMed] [Google Scholar]
  16. KRNJEVIC K., MILEDI R. Motor units in the rat diaphragm. J Physiol. 1958 Mar 11;140(3):427–439. [PMC free article] [PubMed] [Google Scholar]
  17. KRNJEVIC K., MITCHELL J. F. The release of acetylcholine in the isolated rat diaphragm. J Physiol. 1961 Feb;155:246–262. doi: 10.1113/jphysiol.1961.sp006625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LILEY A. W. The quantal components of the mammalian end-plate potential. J Physiol. 1956 Sep 27;133(3):571–587. doi: 10.1113/jphysiol.1956.sp005610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MARTIN A. R. A further study of the statistical composition on the end-plate potential. J Physiol. 1955 Oct 28;130(1):114–122. doi: 10.1113/jphysiol.1955.sp005397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Macintosh F. C. The distribution of acetylcholine in the peripheral and the central nervous system. J Physiol. 1941 Jun 30;99(4):436–442. doi: 10.1113/jphysiol.1941.sp003913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitchell J. F., Silver A. The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol. 1963 Jan;165(1):117–129. doi: 10.1113/jphysiol.1963.sp007046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. TAKEUCHI A., TAKEUCHI N. IONTOPHORETIC APPLICATION OF GAMMA-AMINOBUTYRIC ACID CRAYFISH MUSCLE. Nature. 1964 Sep 5;203:1074–1075. doi: 10.1038/2031074a0. [DOI] [PubMed] [Google Scholar]
  23. WHITTAKER V. P., SHERIDAN M. N. THE MORPHOLOGY AND ACETYLCHOLINE CONTENT OF ISOLATED CEREBRAL CORTICAL SYNAPTIC VESICLES. J Neurochem. 1965 May;12:363–372. doi: 10.1111/j.1471-4159.1965.tb04237.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES