Abstract
A technique for the isolation of intact brush borders from rabbit renal cortex was evaluated. The procedure was monitored by phase and electron microscopy and marker enzymes, i.e. ATP:NMN adenylyl transferase, nuclear; cytochrome oxidase, mitochondrial; β-glucuronidase, lysosomal; and glucose-6-Pase, microsomal; and indicated an essentially pure preparation of brush borders. The disaccharidase, trehalase, previously reported in renal tubules, was localized uniquely in brush borders. Maltase was also found; the specific activities of the two enzymes in the brush borders were increased 10- to 20-fold. Other disaccharidases, such as sucrase, isomaltase, lactase, and cellobiase, were absent. It is suggested that trehalase and maltase are appropriate candidates for marker enzymes of the renal brush border. Isolated brush borders possessed a ouabain-sensitive (Na+ + K+) ATPase, an oligomycin-insensitive Mg++ ATPase, and a Ca++-activated ATPase. Alkaline phosphatases, dephosphorylating β-glycero-P, and trehalose-6-P were also present. The specific activities of these enzymes were increased three-to-five fold in the brush-border preparations; however, activities were found in other subcellular fractions of the renal cortex. Hexokinase, although evident in the isolated brush border, was found prominently associated with other membranous fractions. Phosphoglucomutase and UDPG pyrophosphorylase were localized in the soluble fraction of the renal cortex.
Full Text
The Full Text of this article is available as a PDF (882.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binkley F., King N. L. Disaccharidase activity of renal tissue. Biochem Biophys Res Commun. 1968 Oct 10;33(1):99–101. doi: 10.1016/0006-291x(68)90261-1. [DOI] [PubMed] [Google Scholar]
- Eichholz A. Structural and functional organization of the brush border of intestinal epithelial cells. 3. Enzymic activities and chemical composition of various fractions of tris-disrupted brush borders. Biochim Biophys Acta. 1967 Jul 3;135(3):475–482. doi: 10.1016/0005-2736(67)90037-5. [DOI] [PubMed] [Google Scholar]
- Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossman I. W., Sacktor B. Histochemical localization of renal trehalase: demonstration of a tubular site. Science. 1968 Aug 9;161(3841):571–572. doi: 10.1126/science.161.3841.571. [DOI] [PubMed] [Google Scholar]
- HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
- Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson C. F. Disaccharidase: localization in hamster intestine brush borders. Science. 1967 Mar 31;155(3770):1670–1672. doi: 10.1126/science.155.3770.1670. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L., Skou J. C. Preparation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidney. Biochem Biophys Res Commun. 1969 Sep 24;37(1):39–46. doi: 10.1016/0006-291x(69)90877-8. [DOI] [PubMed] [Google Scholar]
- Kato T., Kurokawa M. Isolation of cell nuclei from the mammalian cerebral cortex and their assortment on a morphological basis. J Cell Biol. 1967 Mar;32(3):649–662. doi: 10.1083/jcb.32.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER D., CRANE R. K. The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis. Biochim Biophys Acta. 1961 Sep 16;52:281–293. doi: 10.1016/0006-3002(61)90677-1. [DOI] [PubMed] [Google Scholar]
- MOELBERT E. R., DUSPIVA F., von DEIMLING O. The demonstration of alkaline phosphatase in the electron microscope. J Biophys Biochem Cytol. 1960 Apr;7:387–390. [PMC free article] [PubMed] [Google Scholar]
- Martin D. L., Melancon M. J., Jr, DeLuca H. F. Vitamin D stimulated, calcium-dependent adenosine triphosphatase from brush borders of rat small intestine. Biochem Biophys Res Commun. 1969 Jun 27;35(6):819–823. doi: 10.1016/0006-291x(69)90697-4. [DOI] [PubMed] [Google Scholar]
- Quigley J. P., Gotterer G. S. Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1969 Apr;173(3):456–468. doi: 10.1016/0005-2736(69)90010-8. [DOI] [PubMed] [Google Scholar]
- Reale E., Luciano L. Kritische elektronenmikroskopische Studien über die Lokalisation der Aktivität alkalischer Phosphatase im Hauptstück der Niere von Mäusen. Histochemie. 1967;8(3):302–314. doi: 10.1007/BF00306094. [DOI] [PubMed] [Google Scholar]
- Sacktor B., Berger S. J. Formation of trehalose from glucose in the renal cortex. Biochem Biophys Res Commun. 1969 Jun 27;35(6):796–800. doi: 10.1016/0006-291x(69)90693-7. [DOI] [PubMed] [Google Scholar]
- Sacktor B. Trehalase and the transport of glucose in the mammalian kidney and intestine. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1007–1014. doi: 10.1073/pnas.60.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thuneberg L., Rostgaard J. Isolation of brush border fragments from homogenates of rat and rabbit kidney cortex. Exp Cell Res. 1968 Jul;51(1):123–140. doi: 10.1016/0014-4827(68)90163-8. [DOI] [PubMed] [Google Scholar]