Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Dec 1;47(3):646–665. doi: 10.1083/jcb.47.3.646

A CYTOLOGICAL STUDY OF THE RELATION OF THE CORTICAL REACTION TO SUBSEQUENT EVENTS OF FERTILIZATION IN URETHANE-TREATED EGGS OF THE SEA URCHIN, ARBACIA PUNCTULATA

Frank J Longo 1, Everett Anderson 1
PMCID: PMC2108158  PMID: 5497545

Abstract

Eggs of the sea urchin, Arbacia punctulata, treated with 3% urethane for 30 sec followed by 0.3% urethane and inseminated are polyspermic and fail to undergo a typical cortical reaction. Upon insemination the vitelline layer of urethane-treated eggs either does not separate or is raised only a short distance from the oolemma. 1–6 min after insemination, almost all of the cortical granules remain intact and are dislodged from the plasmalemma. Later (6 min to the two-cell stage) some cortical granules are released randomly along the surface of the zygote. Not all zygotes show the same degree of cortical granule dehiscence; most of them experience little if any granule release whereas others demonstrate considerably more. The thickness of the hyaline layer appears to be directly related to the number of cortical granules released. Subsequent to pronuclear migration, several male pronuclei become associated with the female pronucleus. Later the male and female pronuclear envelopes contact and the outer and the inner laminae fuse, thereby forming the zygote nucleus. The male pronuclei remaining in the cytoplasm increase in size and progressively migrate to, and fuse with, the zygote nucleus. By 60 min some zygotes appear to contain only one large zygote nucleus which subsequently enters mitosis. Other zygotes possess a number of male pronuclei which remain unfused, and later these pronuclei along with the zygote nucleus undergo mitosis. There does not appear to be a direct relation between the number of cortical granules a zygote possesses and the above mentioned dichotomy.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN R. D. Fertilization and activation of sea urchin eggs in glass capillaries. I. Membrane elevation and nuclear movements in totally and partially fertilized eggs. Exp Cell Res. 1954 May;6(2):403–424. doi: 10.1016/0014-4827(54)90188-3. [DOI] [PubMed] [Google Scholar]
  2. ALLEN R. D., HAGSTROM B. Interruption of the cortical reaction by heat. Exp Cell Res. 1955 Aug;9(1):157–167. doi: 10.1016/0014-4827(55)90170-1. [DOI] [PubMed] [Google Scholar]
  3. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bal A. K., Jubinville F., Cousineau G. H., Inoué S. Origin and fate of annulate lamellae in Arbacia punctulata eggs. J Ultrastruct Res. 1968 Oct;25(1):15–28. doi: 10.1016/s0022-5320(68)80056-5. [DOI] [PubMed] [Google Scholar]
  5. Bryan J. The isolation of a major structural element of the sea urchin fertilization membrane. J Cell Biol. 1970 Mar;44(3):635–645. doi: 10.1083/jcb.44.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  7. ENDO Y. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. I. Clypeaster japonicus. Exp Cell Res. 1961 Nov;25:383–397. doi: 10.1016/0014-4827(61)90288-9. [DOI] [PubMed] [Google Scholar]
  8. ENDO Y. The role of the cortical granules in the formation of the fertilization membrane in the eggs of sea urchins. II. Exp Cell Res. 1961 Dec;25:518–528. doi: 10.1016/0014-4827(61)90187-2. [DOI] [PubMed] [Google Scholar]
  9. ITO S., WINCHESTER R. J. The fine structure of the gastric mucosa in the bat. J Cell Biol. 1963 Mar;16:541–577. doi: 10.1083/jcb.16.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito S. Structure and function of the glycocalyx. Fed Proc. 1969 Jan-Feb;28(1):12–25. [PubMed] [Google Scholar]
  11. Kauffman S. L., Herman L. Ultrastructural changes in embryonic mouse neural tube cells after urethane exposure. Dev Biol. 1968 Jan;17(1):55–74. doi: 10.1016/0012-1606(68)90089-4. [DOI] [PubMed] [Google Scholar]
  12. Kojima M. K. Induction of nuclear changes and cleavage by repeated insufficient stimulations with activating reagents in the sea urchin egg. Embryologia (Nagoya) 1969 Feb;10(3):334–342. [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Longo F. J., Anderson E. The effects of nicotine on fertilization in the sea urchin, Arbacia punctulata. J Cell Biol. 1970 Aug;46(2):308–325. doi: 10.1083/jcb.46.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Longo F. J., Anderson E. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J Cell Biol. 1968 Nov;39(2):339–368. doi: 10.1083/jcb.39.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OKAZAKI R. On the possible role of high energy phosphate in the cortical change of sea urchin egg. I. Effect of dinitrophenol and sodium azide. Exp Cell Res. 1956 Apr;10(2):476–504. doi: 10.1016/0014-4827(56)90020-9. [DOI] [PubMed] [Google Scholar]
  17. RUNNSTROM J., IMMERS J. The role of mucopolysaccharides in the fertilization of the sea urchin egg. Exp Cell Res. 1956 Apr;10(2):354–363. doi: 10.1016/0014-4827(56)90008-8. [DOI] [PubMed] [Google Scholar]
  18. Runnström J. The vitelline membrane and cortical particles in sea urchin eggs and their function in maturation and fertilization. Adv Morphog. 1966;5:221–325. doi: 10.1016/b978-1-4831-9952-8.50010-9. [DOI] [PubMed] [Google Scholar]
  19. SUGIYAMA M. Physiological analysis of the cortical response of the sea urchin egg. Exp Cell Res. 1956 Apr;10(2):364–376. doi: 10.1016/0014-4827(56)90009-x. [DOI] [PubMed] [Google Scholar]
  20. Sachs M. I., Anderson E. A cytological study of artificial parthenogenesis in the sea urchin Arbacia punctulata. J Cell Biol. 1970 Oct;47(1):140–158. doi: 10.1083/jcb.47.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stephens R. E., Kane R. E. Some properties of hyalin: the calcium-insoluble protein of the hyaline layer of the sea urchin egg. J Cell Biol. 1970 Mar;44(3):611–617. doi: 10.1083/jcb.44.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Marsland D. A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J Cell Biol. 1969 Jul;42(1):170–184. doi: 10.1083/jcb.42.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WOLPERT L., MERCER E. H. An electron microscope study of fertilisation of the sea urchin egg Psammechinus miliaris. Exp Cell Res. 1961 Jan;22:45–55. doi: 10.1016/0014-4827(61)90085-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES