Abstract
A comparative biochemical and radioautographic in vivo study was performed to identify the site of synthesis and route of migration of albumin in the parenchymal liver cell after labeling with leucine-14C or leucine-3H via the portal vein. Free cytoplasmic ribosomes, membrane-bound ribosomes, rough- and smooth-surfaced microsomes, and Golgi membranes were isolated. The purity of the Golgi fraction was examined morphologically and biochemically. After administration of leucine-14C, labeled albumin was extracted, and the sequence of transport was followed from one fraction to the other. Approximately 2 min after the intravenous injection, bound ribosomes displayed a maximal rate of leucine-14C incorporation into albumin. 4 min later, a peak was reached for rough microsomes. Corresponding maximal activities for smooth microsomes were recorded at 15 min, and for the Golgi apparatus at ∼20 min. The relative amount of albumin, calculated on a membrane protein basis, was higher in the Golgi fraction than in the microsomes. By radioautography the silver grains were preferentially localized over the rough-surfaced endoplasmic reticulum at the 5 min interval. Apparent activity in the Golgi zone was noted 9 min after the injection; at 15 and 20 min, the majority of the grains were found in this location. Many of the grains associated with the Golgi apparatus were located over Golgi vacuoles containing 300–800 A electron-opaque bodies. It is concluded that albumin is synthesized on bound ribosomes, subsequently is transferred to the cavities of rough-surfaced endoplasmic reticulum, and then undergoes migration to the smooth-surfaced endoplasmic reticulum and the Golgi apparatus. In the latter organelle, albumin can be expected to be segregated together with very low density lipoprotein in vacuoles known to move toward the sinusoidal portion of the cell and release their content to the blood.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley C. A., Peters T., Jr Electron microscopic radioautographic detection of sites of protein synthesis and migration in liver. J Cell Biol. 1969 Nov;43(2):237–249. doi: 10.1083/jcb.43.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beattie D. S., Basford R. E. Brain mitochondria. V. Incorporation of fatty acids into phospholipids in bovine brain mitochondria. J Biol Chem. 1966 Mar 25;241(6):1419–1423. [PubMed] [Google Scholar]
- Bowers W. E., Finkenstaedt J. T., de Duve C. Lysosomes in lymphoid tissue. I. The measurement of hydrolytic activities in whole homogenates. J Cell Biol. 1967 Feb;32(2):325–337. doi: 10.1083/jcb.32.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruni C., Porter K. R. The Fine Structure of the Parenchymal Cell of the Normal Rat Liver: I. General Observations. Am J Pathol. 1965 May;46(5):691–755. [PMC free article] [PubMed] [Google Scholar]
- CAMPBELL P. N., GREENGARD O., KERNOT B. A. Studies on the synthesis o serum albumin by the isolated microsome fraction from rat liver. Biochem J. 1960 Jan;74:107–117. doi: 10.1042/bj0740107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman R., Michell R. H., Finean J. B., Hawthorne J. N. A purified plasma membrane fraction isolated from rat liver under isotonic conditions. Biochim Biophys Acta. 1967 Sep 9;135(4):573–579. doi: 10.1016/0005-2736(67)90089-2. [DOI] [PubMed] [Google Scholar]
- Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
- ERNSTER L., LOW H. Reconstruction of oxidative phosphorylation in aged mitochondrial systems. Exp Cell Res. 1955;(Suppl 3):133–153. [PubMed] [Google Scholar]
- Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GANOZA M. C., WILLIAMS C. A., LIPMANN F. SYNTHESIS OF SERUM PROTEINS BY A CELL-FREE SYSTEM FROM RAT LIVER. Proc Natl Acad Sci U S A. 1965 Mar;53:619–622. doi: 10.1073/pnas.53.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN M., MILLER L. L. Protein catabolism and protein synthesis in perfused livers of normal and alloxan-diabetic rats. J Biol Chem. 1960 Nov;235:3202–3208. [PubMed] [Google Scholar]
- Gardner J. A., Hoagland M. B. A unique ribonucleic acid of low molecular weight from rat liver microsomes. J Biol Chem. 1968 Jan 10;243(1):10–19. [PubMed] [Google Scholar]
- Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver. J Lipid Res. 1968 Nov;9(6):720–729. [PubMed] [Google Scholar]
- Glaumann H., Dallner G. Subfractionation of smooth microsomes from rat liver. J Cell Biol. 1970 Oct;47(1):34–48. doi: 10.1083/jcb.47.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton R. L., Regen D. M., Gray M. E., LeQuire V. S. Lipid transport in liver. I. Electron microscopic identification of very low density lipoproteins in perfused rat liver. Lab Invest. 1967 Feb;16(2):305–319. [PubMed] [Google Scholar]
- Iwata T., Iwata H., Holland J. F. Isolation of albumin from human serum by means of trichloroacetic acid and ethanol. A comparison of methods. Clin Chem. 1968 Jan;14(1):22–30. [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. 3. Dissociation of intracellular transport from protein synthesis. J Cell Biol. 1968 Dec;39(3):580–588. doi: 10.1083/jcb.39.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
- Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
- LEVINE S. Solubilization of bovine albumin in nonaqueous media. Arch Biochem Biophys. 1954 Jun;50(2):515–517. doi: 10.1016/0003-9861(54)90073-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Loeb J. N., Howell R., Tomkins G. M. Free and membrane-bound ribosomes in rat liver. J Biol Chem. 1967 May 10;242(9):2069–2074. [PubMed] [Google Scholar]
- MARSH J. B., DRABKIN D. L. Metabolic channeling in experimental nephrosis. IV. Net synthesis of plasma albumin by liver slices from normal and nephrotic rats. J Biol Chem. 1958 Feb;230(2):1073–1081. [PubMed] [Google Scholar]
- MARSH J. B., WHEREAT A. F. The synthesis of plasma lipoprotein by rat liver. J Biol Chem. 1959 Dec;234:3196–3200. [PubMed] [Google Scholar]
- Molnar J., Tetas M., Chao H. Subcellular site of glycoprotein synthesis in liver. Biochem Biophys Res Commun. 1969 Nov 6;37(4):684–690. doi: 10.1016/0006-291x(69)90865-1. [DOI] [PubMed] [Google Scholar]
- Morre J., Merlin L. M., Keenan T. W. Localization of glycosyl transferase activities in a Golgi apparatus-rich fraction isolated from rat liver. Biochem Biophys Res Commun. 1969 Nov 20;37(5):813–819. doi: 10.1016/0006-291x(69)90964-4. [DOI] [PubMed] [Google Scholar]
- PETERMANN M. L., PAVLOVEC A. Ribonucleoprotein from a rat tumor, the Jensen sarcoma. II. Complexes formed with hemoglobin. J Biol Chem. 1961 Dec;236:3235–3239. [PubMed] [Google Scholar]
- PETERS T., Jr The biosynthesis of rat serum albumin. II. Intracellular phenomena in the secretion of newly formed albumin. J Biol Chem. 1962 Apr;237:1186–1189. [PubMed] [Google Scholar]
- PITOT H. C. ALTERED TEMPLATE STABILITY: THE MOLECULAR MASK OF MALIGNANCY? Perspect Biol Med. 1964;7:50–70. doi: 10.1353/pbm.1964.0004. [DOI] [PubMed] [Google Scholar]
- Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
- Redman C. M. The synthesis of serum proteins on attached rather than free ribosomes of rat liver. Biochem Biophys Res Commun. 1968 Jun 28;31(6):845–850. doi: 10.1016/0006-291x(68)90528-7. [DOI] [PubMed] [Google Scholar]
- Ryoo H., Tarver H. Studies on plasma protein synthesis with a new liver perfusion apparatus. Proc Soc Exp Biol Med. 1968 Jul;128(3):760–772. doi: 10.3181/00379727-128-33118. [DOI] [PubMed] [Google Scholar]
- SIEKEVITZ P. Protoplasm: endoplasmic reticulum and microsomes and their properties. Annu Rev Physiol. 1963;25:15–40. doi: 10.1146/annurev.ph.25.030163.000311. [DOI] [PubMed] [Google Scholar]
- STRAUB P. W. A study of fibrinogen production by human liver slices in vitro by an immunoprecipitin method. J Clin Invest. 1963 Jan;42:130–136. doi: 10.1172/JCI104690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takagi M., Tanaka T., Ogata K. Evidence for exclusive biosynthesis in vivo of serum albumin by bound polysomes of rat liver. J Biochem. 1969 Apr;65(4):651–653. doi: 10.1093/oxfordjournals.jbchem.a129061. [DOI] [PubMed] [Google Scholar]
- Wagner R. R., Cynkin M. A. Enzymatic transfer of 14C-glucosamine from UDP-N-acetyl-14C-glucosamine to endogenous acceptors in a Golgi apparatus-rich fraction from liver. Biochem Biophys Res Commun. 1969 Apr 10;35(1):139–143. doi: 10.1016/0006-291x(69)90495-1. [DOI] [PubMed] [Google Scholar]