Abstract
Through the use of combined spectrophotometric and electron microscope techniques, large amplitude swelling of rat liver mitochondria has been described as an ordered sequence of ultrastructural transitions. Prior to the actual swelling, mitochondria undergo two major conformational changes: condensed to twisted form and twisted to orthodox form. This sequence is independent of (a) the nature of swelling agents and (b) the time of onset of swelling. Agents that delay the onset of swelling act to increase the duration of the twisted conformation. Agents that prevent extensive swelling hold mitochondria in intermediate conformations. Gross swelling, immediately preceded by a decrease in electron opacity of the matrix, involves the rupture of the outer membrane and expansion of the inner compartment of the mitochondrion.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asai J., Blondin G. A., Vail W. J., Green D. E. The mechanism of mitochondrial swelling. IV. Configurational changes during swelling of beef heart mitochondria. Arch Biochem Biophys. 1969 Jul;132(2):524–544. doi: 10.1016/0003-9861(69)90396-8. [DOI] [PubMed] [Google Scholar]
- Blair P. V., Tan W. C. Electron microscopic evidence for volumetric changes in heart mitochondria. Biochim Biophys Acta. 1967;143(3):630–633. doi: 10.1016/0005-2728(67)90070-9. [DOI] [PubMed] [Google Scholar]
- CONNELLY J. L., LARDY H. A. ANTIBIOTICS AS TOOLS FOR METABOLIC STUDIES. 3. EFFECTS OF OLIGOMYCIN AND AUROVERTIN ON THE SWELLING AND CONTRACTION PROCESSES OF MITOCHONDRIA. Biochemistry. 1964 Dec;3:1969–1973. doi: 10.1021/bi00900a031. [DOI] [PubMed] [Google Scholar]
- CONNELLY J. L., LARDY H. A. THE EFFECT OF ADENOSINE TRIPHOSPHATE AND SUBSTRATE ON ORTHOPHOSPHATE-INDUCED MITOCHONDRIAL SWELLING AT ACID PH. J Biol Chem. 1964 Sep;239:3065–3070. [PubMed] [Google Scholar]
- Caplan A. I., Greenawalt J. W. Biochemical and ultrastructural properties of osmotically lysed rat-liver mitochondria. J Cell Biol. 1966 Dec;31(3):455–472. doi: 10.1083/jcb.31.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connelly J. L., Hallstrom C. H. A nonphosphorylative function of adenosine 5'-diphosphate in the maintenance of mitochondrial integrity. Biochemistry. 1967 Jun;6(6):1567–1572. doi: 10.1021/bi00858a001. [DOI] [PubMed] [Google Scholar]
- Connelly J. L., Hallstrom C. H. Studies on the mechanisms controlling time of onset and extent of mitochondrial swelling. Biochemistry. 1966 Feb;5(2):570–577. doi: 10.1021/bi00866a024. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Utsumi K., Packer L. Oscillatory states of mitochondria. 3. Ultrastructure of trapped conformational states. Arch Biochem Biophys. 1967 Sep;121(3):641–651. doi: 10.1016/0003-9861(67)90049-5. [DOI] [PubMed] [Google Scholar]
- Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
- Hackenbrock C. R., Caplan A. I. Ion-induced ultrastructural transformations in isolated mitochondria. The energized uptake of calcium. J Cell Biol. 1969 Jul;42(1):221–234. doi: 10.1083/jcb.42.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci U S A. 1968 Oct;61(2):598–605. doi: 10.1073/pnas.61.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris R. A., Penniston J. T., Asai J., Green D. E. The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states. Proc Natl Acad Sci U S A. 1968 Mar;59(3):830–837. doi: 10.1073/pnas.59.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LYNN W. S., Jr, FORTNEY S., BROWN R. H. ROLE OF EDTA AND METALS IN MITOCHONDRIAL CONTRACTION. J Cell Biol. 1964 Oct;23:9–19. doi: 10.1083/jcb.23.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munn E. A., Blair P. V. An electron microscopic study of structural changes during the large amplitude swelling and contraction of isolated beef-heart mitochondria. Z Zellforsch Mikrosk Anat. 1967;80(2):205–213. doi: 10.1007/BF00337456. [DOI] [PubMed] [Google Scholar]
- Packer L., Wrigglesworth J. M., Fortes P. A., Pressman B. C. Expansion of the inner membrane compartment and its relation to mitochondrial volume and ion transport. J Cell Biol. 1968 Nov;39(2):382–391. doi: 10.1083/jcb.39.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
- SLATER E. C., CLELAND K. W. Stabilization of oxidative phosphorylation in heart-muscle sarcosomes. Nature. 1952 Jul 19;170(4316):118–119. doi: 10.1038/170118b0. [DOI] [PubMed] [Google Scholar]
- Sordahl L. A., Blailock Z. R., Kraft G. H., Schwartz A. The possible relationship between ultrastructure and biochemical state of heart mitochondria. Arch Biochem Biophys. 1969 Jul;132(2):404–415. doi: 10.1016/0003-9861(69)90382-8. [DOI] [PubMed] [Google Scholar]
- Utsumi K., Packer L. Glutaraldehyde-fixed mitochondria. I. Enzyme activity, ion translocation, and conformational changes. Arch Biochem Biophys. 1967 Sep;121(3):633–640. doi: 10.1016/0003-9861(67)90048-3. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber N. E., Blair P. V. Ultrastuctural studies of beef heart mitochondria. I. Effects of adenosine diphosphate on mitochondrial morphology. Biochem Biophys Res Commun. 1969 Sep 10;36(6):987–993. doi: 10.1016/0006-291x(69)90301-5. [DOI] [PubMed] [Google Scholar]
- Weinbach E. C., Garbus J., Sheffield H. G. Morphology of mitochondria in the coupled, uncoupled and recoupled states. Exp Cell Res. 1967 Apr;46(1):129–143. doi: 10.1016/0014-4827(67)90415-6. [DOI] [PubMed] [Google Scholar]
- Wlodawer P., Parsons D. F., Williams G. R., Wojtczak L. Morphological changes in isolated rat-liver mitochondria during swelling and contraction. Biochim Biophys Acta. 1966 Oct 17;128(1):34–47. doi: 10.1016/0926-6593(66)90139-1. [DOI] [PubMed] [Google Scholar]