Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Apr 1;49(1):159–172. doi: 10.1083/jcb.49.1.159

EXPERIMENTAL ALTERATION OF COUPLING RESISTANCE AT AN ELECTROTONIC SYNAPSE

Y Asada 1, M V L Bennett 1
PMCID: PMC2108207  PMID: 4995386

Abstract

Adjacent segments of the septate axon of the crayfish Procambarus are electrotonically coupled by junction located in the septa between them (see Pappas et al. 1970. J. Cell Biol. 49:173). The coupling resistance at the septa was changed by several experimental treatments. Mechanical injury to an axon increased coupling resistance (more than 7-fold); no recovery of coupling resistance was observed, although the resting potential and resistance of the injured axon could return to near normal levels. Immersion in salines with Na propionate substituted for NaCl increased coupling resistance (mean: 6.1-fold). On return of the preparation to normal saline, coupling resistance recovered virtually completely. Immersion in low Ca++ solutions moderately increased coupling resistance (3.5-fold or less), but return to normal saline was followed by large increases in coupling resistance (5–100-fold). 60 nM Ca++ is near the maximum concentration that leads to increased coupling resistance on return to normal saline. Large increases in coupling resistance are associated with separation of junctional membranes (Pappas et al. 1970. Ibid.); calculations show that the separated membranes greatly increase in resistance. Increase in coupling resistance is probably an important response to injury. Mechanisms underlying changes reported here may be relevant to normal physiological processes of coupling and decoupling.

Full Text

The Full Text of this article is available as a PDF (864.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barr L., Berger W., Dewey M. M. Electrical transmission at the nexus between smooth muscle cells. J Gen Physiol. 1968 Mar;51(3):347–368. doi: 10.1085/jgp.51.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. V., Pappas G. D., Giménez M., Nakajima Y. Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol. 1967 Mar;30(2):236–300. doi: 10.1152/jn.1967.30.2.236. [DOI] [PubMed] [Google Scholar]
  4. Bennett M. V. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):509–539. doi: 10.1111/j.1749-6632.1966.tb50178.x. [DOI] [PubMed] [Google Scholar]
  5. Bennett M. V., Trinkaus J. P. Electrical coupling between embryonic cells by way of extracellular space and specialized junctions. J Cell Biol. 1970 Mar;44(3):592–610. doi: 10.1083/jcb.44.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Délèze J. The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J Physiol. 1970 Jul;208(3):547–562. doi: 10.1113/jphysiol.1970.sp009136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HAMA K. Some observations on the fine structure of the giant fibers of the crayfishes (Cambarus virilus and Cambarus clarkii) with special reference to the submicroscopic organization of the synapses. Anat Rec. 1961 Dec;141:275–293. doi: 10.1002/ar.1091410403. [DOI] [PubMed] [Google Scholar]
  9. HUTTER O. F., NOBLE D. Anion conductance of cardiac muscle. J Physiol. 1961 Jul;157:335–350. doi: 10.1113/jphysiol.1961.sp006726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  11. KUFFLER S. W., POTTER D. D. GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM: PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP. J Neurophysiol. 1964 Mar;27:290–320. doi: 10.1152/jn.1964.27.2.290. [DOI] [PubMed] [Google Scholar]
  12. Kriebel M. E. Electrical characteristics of tunicate heart cell membranes and nexuses. J Gen Physiol. 1968 Jul;52(1):46–59. doi: 10.1085/jgp.52.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuffler S. W., Nicholls J. G., Orkand R. K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):768–787. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
  14. Loewenstein W. R., Nakas M., Socolar S. J. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J Gen Physiol. 1967 Aug;50(7):1865–1891. doi: 10.1085/jgp.50.7.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  16. Pappas G. D., Bennett M. V. Specialized junctions involved in electrical transmission between neurons. Ann N Y Acad Sci. 1966 Jul 14;137(2):495–508. doi: 10.1111/j.1749-6632.1966.tb50177.x. [DOI] [PubMed] [Google Scholar]
  17. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  18. Payton B. W., Loewenstein W. R. Stability of electrical coupling in leech giant nerve cells: divalent cations, propionate ions, tonicity and pH. Biochim Biophys Acta. 1968 Jan 3;150(1):156–158. doi: 10.1016/0005-2736(68)90019-9. [DOI] [PubMed] [Google Scholar]
  19. Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Remler M., Selverston A., Kennedy D. Lateral giant fibers of cray fish: location of somata by dye injection. Science. 1968 Oct 11;162(3850):281–283. doi: 10.1126/science.162.3850.281. [DOI] [PubMed] [Google Scholar]
  21. Strickholm A., Wallin B. G., Shrager P. The pH dependency of relative ion permeabilities in the crayfish giant axon. Biophys J. 1969 Jul;9(7):873–883. doi: 10.1016/S0006-3495(69)86424-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Mello W. C., Motta G. E., Chapeau M. A study on the healing-over of myocardial cells of toads. Circ Res. 1969 Mar;24(3):475–487. doi: 10.1161/01.res.24.3.475. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES