Abstract
The principal sites of γ-aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations have been determined with radioautographic techniques after binding of the amino acid to proteins by aldehyde fixation. Semiquantitative studies showed that about 30% of the radioactive GABA taken into the tissue was bound to protein by fixation. Both light and electron micrographs showed dense accumulations of label over Schwann and connective tissue cell cytoplasm; muscle was lightly labeled, but axons and terminals were almost devoid of label. The possible role of Schwann and connective tissue cells in the inactivation of GABA released from inhibitory axons is discussed.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUDEL J., KUFFLER S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:543–562. doi: 10.1113/jphysiol.1961.sp006646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. S., Hamilton D. N., Hosie J. A. The extraneuronal uptake and localization of noradrenaline in the cat spleen and the effect on this of some drugs, of cold and of denervation. J Physiol. 1970 Mar;206(3):563–590. doi: 10.1113/jphysiol.1970.sp009031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERTTING G., AXELROD J. Fate of tritiated noradrenaline at the sympathetic nerve-endings. Nature. 1961 Oct 14;192:172–173. doi: 10.1038/192172a0. [DOI] [PubMed] [Google Scholar]
- Hall Z. W., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase. J Neurochem. 1967 Jan;14(1):45–54. doi: 10.1111/j.1471-4159.1967.tb09492.x. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system--uptake of GABA in the nerve-muscle preparations. J Neurochem. 1968 Jul;15(7):609–620. doi: 10.1111/j.1471-4159.1968.tb08960.x. [DOI] [PubMed] [Google Scholar]
- KRAVITZ E. A., KUFFLER S. W., POTTER D. D. GAMMA-AMINOBUTYRIC ACID AND OTHER BLOCKING COMPOUNDS IN CRUSTACEA. III. THEIR RELATIVE CONCENTRATIONS IN SEPARATED MOTOR AND INHIBITORY AXONS. J Neurophysiol. 1963 Sep;26:739–751. doi: 10.1152/jn.1963.26.5.739. [DOI] [PubMed] [Google Scholar]
- KRAVITZ E. A., POTTER D. D. A FURTHER STUDY OF THE DISTRIBUTION OF GAMMA-AMINOBUTYRIC ACID BETWEEN EXCITATORY AND INHIBITORY AXONS OF THE LOBSTER. J Neurochem. 1965 Apr;12:323–328. doi: 10.1111/j.1471-4159.1965.tb06768.x. [DOI] [PubMed] [Google Scholar]
- Morin W. A., Atwood H. L. A comparative study of gamma-aminobutyric acid uptake in crustacean nerve-muscle preparations. Comp Biochem Physiol. 1969 Aug 1;30(3):577–583. doi: 10.1016/0010-406x(69)92027-1. [DOI] [PubMed] [Google Scholar]
- Neal M. J., Iversen L. L. Subcellular distribution of endogenous and (3H) gamma-aminobutyric acid in rat cerebral cortex. J Neurochem. 1969 Aug;16(8):1245–1252. doi: 10.1111/j.1471-4159.1969.tb05972.x. [DOI] [PubMed] [Google Scholar]
- Otsuka M., Iversen L. L., Hall Z. W., Kravitz E. A. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1110–1115. doi: 10.1073/pnas.56.4.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters T., Jr, Ashley C. A. An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J Cell Biol. 1967 Apr;33(1):53–60. doi: 10.1083/jcb.33.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REVEL J. P., NAPOLITANO L., FAWCETT D. W. Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol. 1960 Dec;8:575–589. doi: 10.1083/jcb.8.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SISKEN B., ROBERTS E. RADIOAUTOGRAPHIC STUDIES OF BINDING OF GAMMA-AMINOBUTYRIC ACID TO THE ABDOMINAL STRETCH RECEPTORS OF THE CRAYFISH. Biochem Pharmacol. 1964 Jan;13:95–103. doi: 10.1016/0006-2952(64)90083-8. [DOI] [PubMed] [Google Scholar]
- Stumpf W. E., Roth L. J. High resolution autoradiography with dry mounted, freeze-dried frozen sections. Comparative study of six methods using two diffusible compounds 3H-estradiol and 3H-mesobilirubinogen. J Histochem Cytochem. 1966 Mar;14(3):274–287. doi: 10.1177/14.3.274. [DOI] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. LOCALIZED ACTION OF GAMMA-AMINOBUTYRIC ACID ON THE CRAYFISH MUSCLE. J Physiol. 1965 Mar;177:225–238. doi: 10.1113/jphysiol.1965.sp007588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. THE EFFECT ON CRAYFISH MUSCLE OF IONTOPHORETICALLY APPLIED GLUTAMATE. J Physiol. 1964 Mar;170:296–317. doi: 10.1113/jphysiol.1964.sp007332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchizono K. Inhibitory synapses on the stretch receptor neurone of the crayfish. Nature. 1967 May 20;214(5090):833–834. doi: 10.1038/214833a0. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
