Abstract
The process of myoblast fusion was observed in embryonic chick skeletal muscle cells grown in monolayer cultures at the fine structural level. At the first step, the sarcolemmas of cells destined to fuse are closely applied to each other. They are linked in some places by fasciae adherentes; in other places, engulfment of small processes of one cell by another is seen. At a somewhat more advanced stage of myogenesis, vesicles and tubules are formed between the adjacent cytoplasms; presumably, the apposed membranes have opened at several points and their edges have fused to each other. Finally, remnants of cell membranes (vesicles and tubules) disappear completely, and the confluent cytoplasm is formed. The cytoplasmic contents of the multinucleated cells are often poorly admixed, giving the cytoplasm a mosaic appearance in which different zones can be designated as arising from separate cells. This observation suggests, however, that there is slow diffusion of myoblast contents (ribosomes and, possibly, other materials) into the myotube. In agreement with the previous works at the light microscopic level, the present study suggests the occurence of fusion between mononucleated cells, between mononucleated cells and multinucleated myotubes, and between nascent multinucleated myotubes.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bischoff R., Holtzer H. Mitosis and the processes of differentiation of myogenic cells in vitro. J Cell Biol. 1969 Apr;41(1):188–200. doi: 10.1083/jcb.41.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischman D. A. An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol. 1967 Mar;32(3):557–575. doi: 10.1083/jcb.32.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSS P. R., PHILPOTT D. E., NASS S. Electron microscopy of the centrifuged sea urchin egg, with a note on the structure of the ground cytoplasm. J Biophys Biochem Cytol. 1960 Feb;7:135–142. doi: 10.1083/jcb.7.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Kelly D. E. Myofibrillogenesis and Z-band differentiation. Anat Rec. 1969 Mar;163(3):403–425. doi: 10.1002/ar.1091630305. [DOI] [PubMed] [Google Scholar]
- MIDGLEY A. R., PIERCE G. B., Jr, DENEAU G. A., GOSLING J. R. Morphogenesis of syncytiotrophoblast in vivo: an autoradiographic demonstration. Science. 1963 Jul 26;141(3578):349–350. doi: 10.1126/science.141.3578.349. [DOI] [PubMed] [Google Scholar]
- MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
- Maslow D. E. Cell specificity in the formation of multinucleated striated muscle. Exp Cell Res. 1969 Mar;54(3):381–390. doi: 10.1016/0014-4827(69)90218-3. [DOI] [PubMed] [Google Scholar]
- OKADA Y. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Exp Cell Res. 1962 Feb;26:98–107. doi: 10.1016/0014-4827(62)90205-7. [DOI] [PubMed] [Google Scholar]
- Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
- Okazaki K., Holtzer H. Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1484–1490. doi: 10.1073/pnas.56.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Przybylski R. J., Blumberg J. M. Ultrastructural aspects of myogenesis in the chick. Lab Invest. 1966 May;15(5):836–863. [PubMed] [Google Scholar]
- SHAFIQ S. A. Electron microscopic studies on the indirect flight muscles of Drosophila melanogaster. II. Differentiation of myofibrils. J Cell Biol. 1963 May;17:363–373. doi: 10.1083/jcb.17.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOCKDALE F. E., HOLTZER H. DNA synthesis and myogenesis. Exp Cell Res. 1961 Sep;24:508–520. doi: 10.1016/0014-4827(61)90450-5. [DOI] [PubMed] [Google Scholar]
- Shimada Y., Fischman D. A., Moscona A. A. The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J Cell Biol. 1967 Nov;35(2):445–453. doi: 10.1083/jcb.35.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDINGTON C. H., PERRY M. M. Helical arrangement of ribosomes in differentiating muscle cells. Exp Cell Res. 1963 May;30:599–600. doi: 10.1016/0014-4827(63)90339-2. [DOI] [PubMed] [Google Scholar]
- YAFFE D., FELDMAN M. THE FORMATION OF HYBRID MULTINUCLEATED MUSCLE FIBERS FROM MYOBLASTS OF DIFFERENT GENETIC ORIGIN. Dev Biol. 1965 Apr;11:300–317. doi: 10.1016/0012-1606(65)90062-x. [DOI] [PubMed] [Google Scholar]
