Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jan 1;48(1):101–119. doi: 10.1083/jcb.48.1.101

CARDIAC MUSCLE OF THE HORSESHOE CRAB, LIMULUS POLYPHEMUS

I. Ultrastructure

R A Leyton 1, E H Sonnenblick 1
PMCID: PMC2108221  PMID: 5545097

Abstract

The fine structure of the cardiac muscle of the horseshoe crab, Limulus polyphemus, has been studied with respect to the organization of its contractile material, and the structure of its organelles and the cell junctions. Longitudinal sections show long sarcomeres (5.37 µ at Lmax), wide A bands (2.7 µ), irregular Z lines, no M line, and no apparent H zone. Transverse sections through the S zone of the A band show that each thick filament is ca. 180 A in diameter, is circular in profile with a center of low density, and is surrounded by an orbit of 9–12 thin filaments, each 60 A in diameter. Thick filaments are confined to the A band: thin filaments originate at the Z band, extend through the I band, and pass into the A band between the thick filaments. The sarcolemmal surface area is increased significantly by intercellular clefts. Extending into the fiber from these clefts and from the sarcolemma, T tubules pass into the fiber at the A-I level. Each fibril is enveloped by a profuse membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR occur at the A-I boundary where they make diadic contact with longitudinal branches of the T system. These branches also extend toward the Z, enlarge at the Z line, and pass into the next sarcomere. Infrequently noted were intercalated discs possessing terminal insertion and desmosome modifications, but lacking close junctions (fasciae occludentes). These structural details are compared with those of mammalian cardiac and invertebrate muscles.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auber J. Particularités ultrastructurales des myofibrilles des muscles du vol chez des Lépidoptères. C R Acad Sci Hebd Seances Acad Sci D. 1967 Jan 23;264(4):621–624. [PubMed] [Google Scholar]
  2. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson A. J. THE NATURE OF THE ACTION OF DRUGS ON THE HEART (PRELIMINARY NOTE). Science. 1904 Nov 18;20(516):684–689. doi: 10.1126/science.20.516.684. [DOI] [PubMed] [Google Scholar]
  5. DE VILLAFRANCA G. W., PHILPOTT D. E. The ultrastructure of striated muscle from Limulus polyphemus. J Ultrastruct Res. 1961 Apr;5:151–165. doi: 10.1016/s0022-5320(61)90011-9. [DOI] [PubMed] [Google Scholar]
  6. Dumont J. N., Anderson E., Chomyn E. The anatomy of the peripheral nerve and its ensheathing artery in the horseshoe crab, Xiphosura (Limulus) polyphemus. J Ultrastruct Res. 1965 Aug;13(1):38–64. doi: 10.1016/s0022-5320(65)80088-0. [DOI] [PubMed] [Google Scholar]
  7. FRANZINI-ARMSTRONG C. FINE STRUCTURE OF SARCOPLASMIC RETICULUM AND TRANVERSE TUBULAR SYSTEM IN MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:887–895. [PubMed] [Google Scholar]
  8. Fahrenbach W. H. The fine structure of fast and slow crustacean muscles. J Cell Biol. 1967 Oct;35(1):69–79. doi: 10.1083/jcb.35.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  12. Hagopian M., Spiro D. The filament lattice of cockroach thoracic muscle. J Cell Biol. 1968 Mar;36(3):433–442. doi: 10.1083/jcb.36.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagopian M., Spiro D. The sarcoplasmic reticulum and its association with the T system in an insect. J Cell Biol. 1967 Mar;32(3):535–545. doi: 10.1083/jcb.32.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagopian M. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J Cell Biol. 1966 Mar;28(3):545–562. doi: 10.1083/jcb.28.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoyle G. Comparative aspects of muscle. Annu Rev Physiol. 1969;31:43–84. doi: 10.1146/annurev.ph.31.030169.000355. [DOI] [PubMed] [Google Scholar]
  16. KARRER H. E. The striated musculature of blood vessels. II. Cell interconnections and cell surface. J Biophys Biochem Cytol. 1960 Sep;8:135–150. doi: 10.1083/jcb.8.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knappeis G. G., Carlsen F. The ultrastructure of the M line in skeletal muscle. J Cell Biol. 1968 Jul;38(1):202–211. doi: 10.1083/jcb.38.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leyton R. A., Ullrick W. G. Z disc ultrastructure in scutal depressor fibers of the barnacle. Science. 1970 Apr 3;168(3927):127–128. doi: 10.1126/science.168.3927.127. [DOI] [PubMed] [Google Scholar]
  19. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  20. O'Connor A. K., O'Brien R. D., Salpeter M. M. Pharmacology and fine structure of peripheral muscle innervation in the cockroach Periplaneta americana. J Insect Physiol. 1965 Oct;11(10):1351–1358. doi: 10.1016/0022-1910(65)90172-1. [DOI] [PubMed] [Google Scholar]
  21. Page E. Correlations between electron microscopic and physiological observations in heart muscle. J Gen Physiol. 1968 May;51(5 Suppl):211S+–211S+. [PubMed] [Google Scholar]
  22. Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
  23. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  24. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reger J. F., Cooper D. P. A comparative study on the fine structure of the basalar muscle of the wing and the tibial extensor muscle of the leg of the lepidopteran Achalarus lyciades. J Cell Biol. 1967 Jun;33(3):531–542. doi: 10.1083/jcb.33.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reger J. F. The fine structure of fibrillar components and plasma membrane contacts in esophageal myoepithelium of Ascaris lumbricoides (var. suum). J Ultrastruct Res. 1966 Mar;14(5):602–617. doi: 10.1016/s0022-5320(66)80085-0. [DOI] [PubMed] [Google Scholar]
  27. Rosenbluth J. Ultrastructural organization of obliquely striated muscle fibers in Ascaris lumbricoides. J Cell Biol. 1965 Jun;25(3):495–515. doi: 10.1083/jcb.25.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SONNENBLICK E. H., SPIRO D., COTTRELL T. S. Fine structural changes in heart muscle in relation of the lengthtension curve. Proc Natl Acad Sci U S A. 1963 Feb 15;49:193–200. doi: 10.1073/pnas.49.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schaefer C. W., Vanderberg J. P., Rhodin J. The fine structure of mosquito midgut muscle. J Cell Biol. 1967 Sep;34(3):905–911. doi: 10.1083/jcb.34.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith D. S., Gupta B. L., Smith U. The organization and myofilament array of insect visceral muscles. J Cell Sci. 1966 Mar;1(1):49–57. doi: 10.1242/jcs.1.1.49. [DOI] [PubMed] [Google Scholar]
  31. Smith D. S. The organization of flight muscle fibers in the Odonata. J Cell Biol. 1966 Jan;28(1):109–126. doi: 10.1083/jcb.28.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. S. The organization of flight muscle in an aphid, Megoura viciae (Homoptera). With a discussion on the structure of synchronous and asynchronous striated muscle fibers. J Cell Biol. 1965 Nov;27(2):379–393. doi: 10.1083/jcb.27.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith D. S. The structure of intersegmental muscle fibers in an insect, Periplaneta americana L. J Cell Biol. 1966 Jun;29(3):449–459. doi: 10.1083/jcb.29.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sohal R. S., Sun S. C., Colcolough H. L., Burch G. E. Ultastructural changes in the intercalated disc in exercised rat hearts. Lab Invest. 1968 Jan;18(1):49–53. [PubMed] [Google Scholar]
  35. Spotnitz H. M., Sonnenblick E. H., Spiro D. Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res. 1966 Jan;18(1):49–66. doi: 10.1161/01.res.18.1.49. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES