Abstract
Beating salamander hearts were maintained in tissue culture for periods ranging from 1 to 6 months. After 1, 3, or 6 months of culture, six hearts, along with six control hearts, were fixed for electron microscopy. In control tissue, the sarcoplasmic reticulum usually demonstrated the normal pattern of paired, linearly arranged membranes, although in some cases, the reticulum showed a variation from these membranes to a series of small vesicles. There was no evidence of a T-system of tubules in any of the material examined. Desmosome-Z band complexes were observed in almost all sections of both control and experimental material. A possible role of these complexes in the excitation-contraction mechanism is discussed. In 3 month cultured material, alterations in normal myofibrillar pattern occurred. Small segments of myofibrils branched from one Z band to join the Z band of an adjacent myofibril, or appeared to be fraying out into the sarcoplasm. In 6 month cultured material, myofibrils were fragmented into short segments from which myofilaments frayed out into the sarcoplasm. This filamentous material may be remnants of myofilaments. Despite the morphological changes in myofibrils, the heart pulsation rate, established at the beginning, was maintained throughout the culture period. It is suggested that the alterations, observed in the experimental material, occurred in elements not essential for heart beat maintenance, or that these alterations have not yet progressed to a critical point of affecting the heart beat.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIELIG H. J., BAYER E. Uber die Molekulargrösse des Hämovanadins; untersuchungen über den vanadiumhaltigen Blutfarbstoff. III. Experientia. 1954 Jul 15;10(7):300–302. doi: 10.1007/BF02158739. [DOI] [PubMed] [Google Scholar]
- CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CEDERGREN B., HARARY I. IN VITRO STUDIES ON SINGLE BEATING RAT HEART CELLS. VI. ELECTRON MICROSCOPIC STUDIES OF SINGLE CELLS. J Ultrastruct Res. 1964 Dec;11:428–442. doi: 10.1016/s0022-5320(64)80074-5. [DOI] [PubMed] [Google Scholar]
- CEDERGREN B., HARARY I. IN VITRO STUDIES ON SINGLE BEATING RAT HEART CELLS. VII. ULTRASTRUCTURE OF THE BEATING CELL LAYER. J Ultrastruct Res. 1964 Dec;11:443–454. doi: 10.1016/s0022-5320(64)80075-7. [DOI] [PubMed] [Google Scholar]
- EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
- EDWARDS G. A., CHALLICE C. E. The fine structure of cardiac muscle cells of ntwborn and suckling mice. Exp Cell Res. 1958 Aug;15(1):247–250. doi: 10.1016/0014-4827(58)90085-5. [DOI] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W. The sarcoplasmic reticulum of skeletal and cardiac muscle. Circulation. 1961 Aug;24:336–348. doi: 10.1161/01.cir.24.2.336. [DOI] [PubMed] [Google Scholar]
- Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firket H. Ultrastructural aspects of myofibrils formation in cultured skeletal muscle. Z Zellforsch Mikrosk Anat. 1967;78(3):313–327. doi: 10.1007/BF00325316. [DOI] [PubMed] [Google Scholar]
- GRIMLEY P. M., EDWARDS G. A. The ultrastructure of cardiac desnosomes in the toad and their relationship to the intercalated disc. J Biophys Biochem Cytol. 1960 Oct;8:305–318. doi: 10.1083/jcb.8.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H. E. The contractile structure of cardiac and skeletal muscle. Circulation. 1961 Aug;24:328–335. doi: 10.1161/01.cir.24.2.328. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lentz T. L. Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am J Anat. 1969 Apr;124(4):447–479. doi: 10.1002/aja.1001240404. [DOI] [PubMed] [Google Scholar]
- MUIR A. R. An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J Biophys Biochem Cytol. 1957 Mar 25;3(2):193–202. doi: 10.1083/jcb.3.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
- Sonnenblick E. H., Stam A. C., Jr Cardiac muscle: activation and contraction. Annu Rev Physiol. 1969;31:647–674. doi: 10.1146/annurev.ph.31.030169.003243. [DOI] [PubMed] [Google Scholar]
- WEINSTEIN H. J. An electron microscope study of cardiac muscle. Exp Cell Res. 1954 Aug;7(1):130–146. doi: 10.1016/0014-4827(54)90048-8. [DOI] [PubMed] [Google Scholar]