Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jan 1;48(1):49–60. doi: 10.1083/jcb.48.1.49

ULTRASTRUCTURE AND CALCIUM TRANSPORT IN CRUSTACEAN MUSCLE MICROSOMES

R J Baskin 1
PMCID: PMC2108227  PMID: 4250925

Abstract

Fragmented sarcoplasmic reticulum (FSR) from crustacean muscle was examined following preparation by a variety of electron microscopic techniques. The 30–40 A particles which appeared on the outer surface of FSR vesicles following negative staining were not observed following preparation by freeze-drying, freeze-etching, thin sectioning, or critical-point drying. Crustacean FSR exhibited high values of calcium uptake and extensive nodular formation in the presence of oxalate. 80–90 A diameter membrane particles were seen in freeze-etch preparations of both intact lobster muscle and FSR vesicles. Thin sections of FSR vesicles revealed a membrane thickness of 60–70 A. The membrane appeared to be triple layered, each layer having a thickness of 20–25 A.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin R. J., Deamer D. W. Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes. J Cell Biol. 1969 Dec;43(3):610–617. doi: 10.1083/jcb.43.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deamer D. W., Baskin R. J. Ultrastructure of sarcoplasmic reticulum preparations. J Cell Biol. 1969 Jul;42(1):296–307. doi: 10.1083/jcb.42.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FANBURG B., GERGELY J. STUDIES ON ADENOSINE TRIPHOSPHATE-SUPPORTED CALCIUM ACCUMULATION BY CARDIAC SUBCELLULAR PARTICLES. J Biol Chem. 1965 Jun;240:2721–2728. [PubMed] [Google Scholar]
  4. Hasselbach W., Elfvin L. G. Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy. J Ultrastruct Res. 1967 Mar;17(5):598–622. doi: 10.1016/s0022-5320(67)80143-6. [DOI] [PubMed] [Google Scholar]
  5. Inesi G., Asai H. Trypsin digestion of fragmented sarcoplasmic reticulum. Arch Biochem Biophys. 1968 Aug;126(2):469–477. doi: 10.1016/0003-9861(68)90431-1. [DOI] [PubMed] [Google Scholar]
  6. Martonosi A. Sarcoplasmic reticulum. V. The structure of sarcoplasmic reticulum membranes. Biochim Biophys Acta. 1968 Jun 11;150(4):694–704. doi: 10.1016/0005-2736(68)90059-x. [DOI] [PubMed] [Google Scholar]
  7. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenbluth J. Sarcoplasmic reticulum of an unusually fast-acting crustacean muscle. J Cell Biol. 1969 Aug;42(2):534–547. doi: 10.1083/jcb.42.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stoeckenius W., Engelman D. M. Current models for the structure of biological membranes. J Cell Biol. 1969 Sep;42(3):613–646. doi: 10.1083/jcb.42.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van der Kloot W. G., Glovsky J. The uptake of Ca2+ and Sr2+ by fractions from lobster muscle. Comp Biochem Physiol. 1965 Aug;15(4):547–565. doi: 10.1016/0010-406x(65)90154-4. [DOI] [PubMed] [Google Scholar]
  11. Zobel C. R., Baskin R. J., Wolfe S. L. Electron microscope observations on thick filaments isolated from striated muscle. J Ultrastruct Res. 1967 Jun;18(5):637–650. doi: 10.1016/s0022-5320(67)80209-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES