Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jan 1;48(1):15–28. doi: 10.1083/jcb.48.1.15

FERRITIN IN THE FUNGUS PHYCOMYCES

Charles N David 1, Kenneth Easterbrook 1
PMCID: PMC2108231  PMID: 5545102

Abstract

The iron-protein ferritin has been purified from mycelium, sporangiophores, and spores of the fungus Phycomyces blakesleeanus. It has a protein-to-iron ratio of 5, a sedimentation coefficient of 55S, a buoyant density in CsCl of 1.82 g/cm3, and the characteristic morphology of ferritin in the electron microscope. Apoferritin prepared from Phycomyces ferritin has a sedimentation coefficient of 18S and consists of subunits of molecular weight 25,000. In the cytoplasm of Phycomyces, ferritin is located on the surface of lipid droplets (0.5–2.0 µ in diameter) where it forms crystalline monolayers which are conspicuous in electron micrographs of sporangiophore thin-sections. Ferritin is found in all developmental stages of Phycomyces but is concentrated in spores. The level of ferritin iron is regulated by the iron level in the growth medium, a 50-fold increase occurring on iron-supplemented medium.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEHRENS M., TAUBERT M. Zur Darstellung von Apoferritin. Hoppe Seylers Z Physiol Chem. 1952;290(3-6):156–159. [PubMed] [Google Scholar]
  2. BESSIS M., BRETON-GORIUS J. [Various aspects of iron in the organism. I. Ferritin and ferruginous micelles]. J Biophys Biochem Cytol. 1959 Oct;6:231–236. [PMC free article] [PubMed] [Google Scholar]
  3. Bergman K., Burke P. V., Cerdá-Olmedo E., David C. N., Delbrück M., Foster K. W., Goodell E. W., Heisenberg M., Meissner G., Zalokar M. Phycomyces. Bacteriol Rev. 1969 Mar;33(1):99–157. doi: 10.1128/br.33.1.99-157.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DRYSDALE J. W., MUNRO H. N. SMALL-SCALE ISOLATION OF FERRITIN FOR THE ASSAY OF THE INCORPORATION OF 14C-LABELLED AMINO ACIDS. Biochem J. 1965 Jun;95:851–858. doi: 10.1042/bj0950851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drysdale J. W., Munro H. N. Regulation of synthesis and turnover of ferritin in rat liver. J Biol Chem. 1966 Aug 10;241(15):3630–3637. [PubMed] [Google Scholar]
  6. FINEBERG R. A., GREENBERG D. M. Ferritin biosynthesis. II. Acceleration of synthesis by the administration of iron. J Biol Chem. 1955 May;214(1):97–106. [PubMed] [Google Scholar]
  7. FISCHER D. S., PRICE D. C. A SIMPLE SERUM IRON METHOD USING THE NEW SENSITIVE CHROMOGEN TRIPYRIDYL-S-TRIAZINE. Clin Chem. 1964 Jan;10:21–31. [PubMed] [Google Scholar]
  8. Fischbach F. A., Anderegg J. W. An x-ray scattering study of ferritin and apoferritin. J Mol Biol. 1965 Dec;14(2):458–473. doi: 10.1016/s0022-2836(65)80196-6. [DOI] [PubMed] [Google Scholar]
  9. HYDE B. B., HODGE A. J., KAHN A., BIRNSTIEL M. L. STUDIES ON PHYTOFERRITIN. I. IDENTIFICATION AND LOCALIZATION. J Ultrastruct Res. 1963 Oct;59:248–258. doi: 10.1016/s0022-5320(63)80005-2. [DOI] [PubMed] [Google Scholar]
  10. Harrison P. M., Fischbach F. A., Hoy T. G., Haggis G. H. Ferric oxyhydroxide core of ferritin. Nature. 1967 Dec 23;216(5121):1188–1190. doi: 10.1038/2161188a0. [DOI] [PubMed] [Google Scholar]
  11. Harrison P. M., Gregory D. W. Evidence for the existence of stable "aggregates" in horse ferritin and apoferritin. J Mol Biol. 1965 Dec;14(2):626–629. doi: 10.1016/s0022-2836(65)80217-0. [DOI] [PubMed] [Google Scholar]
  12. KERR D. N., MUIR A. R. A demonstration of the structure and disposition of ferritin in the human liver cell. J Ultrastruct Res. 1960 Feb;3:313–319. doi: 10.1016/s0022-5320(60)80017-2. [DOI] [PubMed] [Google Scholar]
  13. KUFF E. L., DALTON A. J. Identification of molecular ferritin in homogenates and sections of rat liver. J Ultrastruct Res. 1957 Nov;1(1):62–73. doi: 10.1016/s0022-5320(57)80013-6. [DOI] [PubMed] [Google Scholar]
  14. LOFTFIELD R. B., EIGNER E. A. The time required for the synthesis of a ferritin molecule in rat liver. J Biol Chem. 1958 Apr;231(2):925–943. [PubMed] [Google Scholar]
  15. MORTON R. K. Alkaline phosphatase of milk. 1. Association of the enzyme with a particulate lipoprotein complex. Biochem J. 1953 Dec;55(5):786–795. doi: 10.1042/bj0550786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NOSSAL P. M. A mechanical cell disintegrator. Aust J Exp Biol Med Sci. 1953 Dec;31(6):583–589. doi: 10.1038/icb.1953.64. [DOI] [PubMed] [Google Scholar]
  17. ROCHE J., BESSIS M., BRETON-GORIUS J., STRALIN H. [Demonstration of hemoglobin and ferritin molecules in certain cells of Arenicola marina L]. C R Hebd Seances Acad Sci. 1961 Jun 12;252:3886–3887. [PubMed] [Google Scholar]
  18. STRAUSS J. H., Jr, SINSHEIMER R. L. Purification and properties of bacteriophage MS2 and of its ribonucleic acid. J Mol Biol. 1963 Jul;7:43–54. doi: 10.1016/s0022-2836(63)80017-0. [DOI] [PubMed] [Google Scholar]
  19. Saddi R., von der Decken A. The effect of iron administration on the incorporation of [14C] leucine into ferritin by rat-liver systems. Biochim Biophys Acta. 1965 Nov 15;111(1):124–133. doi: 10.1016/0304-4165(65)90478-2. [DOI] [PubMed] [Google Scholar]
  20. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  21. Zalokar M. Intracellular centrifugal separation of organelles in Phycomyces. J Cell Biol. 1969 May;41(2):494–509. doi: 10.1083/jcb.41.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES