Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jan 1;48(1):79–90. doi: 10.1083/jcb.48.1.79

THE EFFECTS OF IRON DEFICIENCY ON THE HEPATOCYTE: A BIOCHEMICAL AND ULTRASTRUCTURAL STUDY

Peter R Dallman 1, Joseph R Goodman 1
PMCID: PMC2108232  PMID: 4322719

Abstract

Effects of iron deficiency on the hepatocyte were studied quantitatively in the rat by combining ultrastructural and biochemical techniques. After 3–8 wk of an iron-deficient diet, the percentage of cytoplasm occupied by mitochondria increased progressively compared with complete diet values. The increment resulted primarily from an enlargement of individual mitochondria rather than from an increased mitochondrial number. Many mitochondria were completely divided by a double membrane, often at a point of constriction. After 2 days of iron administration, mitochondria were of heterogeneous size, shape, and electron opacity. After 5 days, essentially all mitochondria had become normal in configuration. The rate of reversal of the morphological abnormality was more rapid than would be anticipated if it coincided with known rates of renewal of mitochondrial DNA or protein. The concentrations of mitochondrial cytochromes were more rapidly depressed as a result of iron deprivation than those of microsomal cytochromes. Cytochromes c and a were decreased after 3 and 8 wk of exposure to the deficient regimen. Cytochrome P 450 was not decreased after a 3 wk exposure to the deficient diet and responded normally to phenobarbital treatment with a fourfold increase in total hepatic content; its concentration was depressed only after 8 wk of exposure to the deficient diet. There was no reduction in cytochrome b 5 concentration.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEUTLER E. Iron enzymes in iron deficiency. I. Cytochrome c. Am J Med Sci. 1957 Nov;234(5):517–527. doi: 10.1097/00000441-195711000-00003. [DOI] [PubMed] [Google Scholar]
  2. BURCH H. B., HUNTER F. E., Jr, COMBS A. M., SCHUTZ B. A. Oxidative enzymes and phosphorylation in hepatic mitochondria from riboflavin-deficient rats. J Biol Chem. 1960 May;235:1540–1544. [PubMed] [Google Scholar]
  3. Bischoff M. B., Dean W. D., Bucci T. J., Frics L. A. Ultrastructural changes in myocardium of animals after five months residence at 14,110 feet. Fed Proc. 1969 May-Jun;28(3):1268–1273. [PubMed] [Google Scholar]
  4. CARTWRIGHT G. E., GUBLER C. J., WINTROBE M. M. Studies on copper metabolism. XX. Enzyme activities and iron metabolism in copper and iron deficiencies. J Biol Chem. 1957 Jan;224(1):533–546. [PubMed] [Google Scholar]
  5. CHANCE B. Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature. 1952 Feb 9;169(4293):215–221. doi: 10.1038/169215a0. [DOI] [PubMed] [Google Scholar]
  6. CROSBY W. H., MUNN J. I., FURTH F. W. Standardizing a method for clinical hemoglobinometry. U S Armed Forces Med J. 1954 May;5(5):693–703. [PubMed] [Google Scholar]
  7. DALLMAN P. R., SCHWARTZ H. C. DISTRIBUTION OF CYTOCHROME C AND MYOGLOBIN IN RATS WITH DIETARY IRON DEFICIENCY. Pediatrics. 1965 Apr;35:677–686. [PubMed] [Google Scholar]
  8. Dallman P. R. Cytochrome oxidase repair during treatment of copper deficiency: relation to mitochondrial turnover. J Clin Invest. 1967 Nov;46(11):1819–1827. doi: 10.1172/JCI105672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dallman P. R. Cytochrome oxidase repair during treatment of copper deficiency: relation to mitochondrial turnover. J Clin Invest. 1967 Nov;46(11):1819–1827. doi: 10.1172/JCI105672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dallman P. R., Dallner G., Bergstrand A., Ernster L. Heterogeneous distribution of enzymes in submicrosomal membrane fragments. J Cell Biol. 1969 May;41(2):357–377. doi: 10.1083/jcb.41.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dallman P. R., Goodman J. R. Enlargement of mitochondrial compartment in iron and copper deficiency. Blood. 1970 Apr;35(4):496–505. [PubMed] [Google Scholar]
  12. Dallman P. R., Schwartz H. C. Myoglobin and cytochrome response during repair of iron deficiency in the rat. J Clin Invest. 1965 Oct;44(10):1631–1638. doi: 10.1172/JCI105269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ernster L., Orrenius S. Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc. 1965 Sep-Oct;24(5):1190–1199. [PubMed] [Google Scholar]
  14. FAWCETT D. W. Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst. 1955 Apr;15(5 Suppl):1475–1503. [PubMed] [Google Scholar]
  15. GALLAGHER C. H., JUDAH J. D., REES K. R. The biochemistry of copper deficiency. I. Enzymological disturbances, blood chemistry and excretion of amino-acids. Proc R Soc Lond B Biol Sci. 1956 Mar 27;144(918):134–150. doi: 10.1098/rspb.1956.0022. [DOI] [PubMed] [Google Scholar]
  16. Gollnick P. D., King D. W. Effect of exercise and training on mitochondria of rat skeletal muscle. Am J Physiol. 1969 Jun;216(6):1502–1509. doi: 10.1152/ajplegacy.1969.216.6.1502. [DOI] [PubMed] [Google Scholar]
  17. Goodman J. R., Warshaw J. B., Dallman P. R. Cardiac hypertrophy in rats with iron and copper deficiency: quantitative contribution of mitochondrial enlargement. Pediatr Res. 1970 May;4(3):244–256. doi: 10.1203/00006450-197005000-00003. [DOI] [PubMed] [Google Scholar]
  18. HERDSON P. B., GARVIN P. J., JENNINGS R. B. FINE STRUCTURAL CHANGES PRODUCED IN RAT LIVER BY PARTIAL STARVATION. Am J Pathol. 1964 Aug;45:157–181. [PMC free article] [PubMed] [Google Scholar]
  19. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harris R. A., Williams C. H., Caldwell M., Green D. E., Valdivia E. Energized configurations of heart mitochondria in situ. Science. 1969 Aug 15;165(3894):700–703. doi: 10.1126/science.165.3894.700. [DOI] [PubMed] [Google Scholar]
  21. Jasper D. K., Bronk J. R. Studies on the physiological and structural characteristics of rat intestinal mucosa. Mitochondrial structural changes during amino acid absorption. J Cell Biol. 1968 Aug;38(2):277–291. doi: 10.1083/jcb.38.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jennings R. B., Herdson P. B., Sommers H. M. Structural and functional abnormalities in mitochondria isolated from ischemic dog myocardium. Lab Invest. 1969 Jun;20(6):548–557. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. LUCK D. F. FORMATION OF MITOCHONDRIA IN NEUROSPORA CRASSA. A STUDY BASED ON MITOCHONDRIAL DENSITY CHANGES. J Cell Biol. 1965 Mar;24:461–470. doi: 10.1083/jcb.24.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robinson S. H. Increased formation of early-labeled bilirubin in rats with iron deficiency anemia: evidence for ineffective erythropoiesis. Blood. 1969 Jun;33(6):909–917. [PubMed] [Google Scholar]
  27. SWIFT H., HRUBAN Z. FOCAL DEGRADATION AS A BIOLOGICAL PROCESS. Fed Proc. 1964 Sep-Oct;23:1026–1037. [PubMed] [Google Scholar]
  28. Schimke R. T., Ganschow R., Doyle D., Arias I. M. Regulation of protein turnover in mammalian tissues. Fed Proc. 1968 Sep-Oct;27(5):1223–1230. [PubMed] [Google Scholar]
  29. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stancliff R. C., Williams M. A., Utsumi K., Packer L. Essential fatty acid deficiency and mitochondrial function. Arch Biochem Biophys. 1969 May;131(2):629–642. doi: 10.1016/0003-9861(69)90438-x. [DOI] [PubMed] [Google Scholar]
  31. Tandler B., Erlandson R. A., Smith A. L., Wynder E. L. Riboflavin and mouse hepatic cell structure and function. II. Division of mitochondria during recovery from simple deficiency. J Cell Biol. 1969 May;41(2):477–493. doi: 10.1083/jcb.41.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WILLIAMS J. N., Jr A METHOD FOR THE SIMULTANEOUS QUANTITATIVE ESTIMATION OF CYTOCHROMES A, B, C1, AND C IN MITOCHONDRIA. Arch Biochem Biophys. 1964 Sep;107:537–543. doi: 10.1016/0003-9861(64)90313-3. [DOI] [PubMed] [Google Scholar]
  33. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES