Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Oct 1;51(1):72–82. doi: 10.1083/jcb.51.1.72

THE MYOFILAMENT LATTICE: STUDIES ON ISOLATED FIBERS

I. The Constancy of the Unit-Cell Volume with Variation in Sarcomere Length in a Lattice in which the Thin-to-Thick Myofilament Ratio is 6:1

Ernest W April 1, Philip W Brandt 1, Gerald F Elliott 1
PMCID: PMC2108234  PMID: 5111882

Abstract

The spacing between the thick myofilaments of muscle fibers from the walking legs of crayfish (Orconectes) was determined by optical transform analysis of electron micrograph plates of fixed single fibers and by X-ray diffraction of living single fibers. Sarcomere lengths were determined by light diffraction prior to fixation and prior to the in vivo experiments. From these combined measurements, it is demonstrated that the unit-cell volume of the myofilament lattice is constant during muscle shortening, indicating that the myofilament lattice works in a constant-volume manner. It is further demonstrated with X-ray diffraction measurements of living single fibers that the myofilament lattice continues to work at constant volume after the sarcolemma is removed from the fiber. This indicates that the constant-volume behavior of muscle is inherent to the myofilament lattice.

Full Text

The Full Text of this article is available as a PDF (794.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt P. W., Lopez E., Reuben J. P., Grundfest H. The relationship between myofilament packing density and sarcomere length in frog striated muscle. J Cell Biol. 1967 May 1;33(2):255–263. doi: 10.1083/jcb.33.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARLSEN F., KNAPPEIS G. G., BUCHTHAL F. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol. 1961 Oct;11:95–117. doi: 10.1083/jcb.11.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ELLIOTT G. F. A SMALL-ANGLE OPTICALLY FOCUSING X-RAY DIFFRACTION CAMERA IN BIOLOGICAL RESEARCH. II. J Ultrastruct Res. 1963 Aug;39:171–176. doi: 10.1016/s0022-5320(63)80045-3. [DOI] [PubMed] [Google Scholar]
  6. ELLIOTT G. F., WORTHINGTON C. R. A SMALL-ANGLE OPTICALLY FOCUSING X-RAY DIFFRACTION CAMERA IN BIOLOGICAL RESEARCH. I. J Ultrastruct Res. 1963 Aug;49:166–170. doi: 10.1016/s0022-5320(63)80044-1. [DOI] [PubMed] [Google Scholar]
  7. Elliott G. F. Force-balances and stability in hexagonally-packed polyelectrolyte systems. J Theor Biol. 1968 Oct;21(1):71–87. doi: 10.1016/0022-5193(68)90060-x. [DOI] [PubMed] [Google Scholar]
  8. Elliott G. F., Lowy J., Millman B. M. Low-angle x-ray diffraction studies of living striated muscle during contraction. J Mol Biol. 1967 Apr 14;25(1):31–45. doi: 10.1016/0022-2836(67)90277-x. [DOI] [PubMed] [Google Scholar]
  9. Elliott G. F., Lowy J., Millman B. M. X-ray diffraction from living striated muscle during contraction. Nature. 1965 Jun 26;206(991):1357–1358. doi: 10.1038/2061357a0. [DOI] [PubMed] [Google Scholar]
  10. Elliott G. F., Rome E. M., Spencer M. A type of contraction hypothesis applicable to all muscles. Nature. 1970 May 2;226(5244):417–420. doi: 10.1038/226417a0. [DOI] [PubMed] [Google Scholar]
  11. Elliott G. F. Variations of the contractile apparatus in smooth and striated muscles. X-ray diffraction studies at rest and in contraction. J Gen Physiol. 1967 Jul;50(6 Suppl):171–184. doi: 10.1085/jgp.50.6.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fahrenbach W. H. The fine structure of fast and slow crustacean muscles. J Cell Biol. 1967 Oct;35(1):69–79. doi: 10.1083/jcb.35.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HARRIS E. J. The site of swelling in muscle. J Biophys Biochem Cytol. 1961 Feb;9:502–504. doi: 10.1083/jcb.9.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  16. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HUXLEY H. E. Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta. 1953 Nov;12(3):387–394. doi: 10.1016/0006-3002(53)90156-5. [DOI] [PubMed] [Google Scholar]
  18. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  19. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  20. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  21. KLUG A., BERGER J. E. AN OPTICAL METHOD FOR THE ANALYSIS OF PERIODICITIES IN ELECTRON MICROGRAPHS, AND SOME OBSERVATIONS ON THE MECHANISM OF NEGATIVE STAINING. J Mol Biol. 1964 Dec;10:565–569. doi: 10.1016/s0022-2836(64)80081-4. [DOI] [PubMed] [Google Scholar]
  22. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. REUBEN J. P., GIRARDIER L., GRUNDFEST H. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS. J Gen Physiol. 1964 Jul;47:1141–1174. doi: 10.1085/jgp.47.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rome E. Light and X-ray diffraction studies of the filament lattice of glycerol-extracted rabbit psoas muscle. J Mol Biol. 1967 Aug 14;27(3):591–602. doi: 10.1016/0022-2836(67)90061-7. [DOI] [PubMed] [Google Scholar]
  25. Rome E. X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J Mol Biol. 1968 Oct 28;37(2):331–344. doi: 10.1016/0022-2836(68)90272-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES