Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Oct 1;51(1):223–239. doi: 10.1083/jcb.51.1.223

INCREASE IN OSMIOPHILIA OF AXONAL MEMBRANES OF CRAYFISH AS A RESULT OF ELECTRICAL STIMULATION, ASPHYXIA, OR TREATMENT WITH REDUCING AGENTS

Camillo Peracchia 1, J David Robertson 1
PMCID: PMC2108239  PMID: 5111876

Abstract

Certain axonal membranes of crayfish abdominal nerve cord display ultrastructural changes if the axons are fixed, during electrical stimulation, by aldehydes followed by osmium. Such changes are characterized by an increase in electron opacity and thickness of the unit membranes' dense strata in the axon surface, endoplasmic reticulum, and outer mitochondrial membranes. The electron opacity completely disappears if the sections are treated with hydrogen peroxide solutions. This suggests that the changes represent an increase in the membranes' reactivity for osmium. An unmasking of SH groups could explain such increased osmiophilia, since SH groups are very reactive with osmium, while disulfide bonds are considerably less reactive. This hypothesis was tested by treating control, glutaraldehydefixed nerve cords with disulfide reducing agents. In these preparations an increase in electron opacity and thickness was observed to be localized in the same axonal membranes which reacted as a result of electrical stimulation. The phenomenon did not appear if the SH groups were blocked by maleimide or N-ethylmaleimide before treatment with osmium. These findings seem to suggest that certain axonal membranes of crayfish contain proteins rich in sulfur whose SH groups are unmasked as a result of electrical stimulation. In preliminary experiments an increase in osmiophilia localized in the same membranes with the same characteristics and distribution was observed also in axons from nerve cords asphyxiated either in vitro or in the living animal.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akert K., Sandri C. An electron-microscopic study of zinc iodide-osmium impregnation of neurons. I. Staining of synaptic vesicles at cholinergic junctions. Brain Res. 1968 Feb;7(2):286–295. doi: 10.1016/0006-8993(68)90104-2. [DOI] [PubMed] [Google Scholar]
  2. BAHR G. F. Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains. III. Exp Cell Res. 1954 Nov;7(2):457–479. doi: 10.1016/s0014-4827(54)80091-7. [DOI] [PubMed] [Google Scholar]
  3. BARRNETT R. J., SELIGMAN A. M. Histochemical demonstration of protein-bound sulfhydryl groups. Science. 1952 Sep 26;116(3013):323–327. doi: 10.1126/science.116.3013.323. [DOI] [PubMed] [Google Scholar]
  4. BARRNETT R. J., SELIGMAN A. M. Histochemical demonstration of sulfhydryl and disulfide groups of protein. J Natl Cancer Inst. 1954 Feb;14(4):769–803. [PubMed] [Google Scholar]
  5. CORFIELD M. C., ROBSON A., SKINNER B. The amino acid compositions of three fractions from oxidized wool. Biochem J. 1958 Feb;68(2):348–352. doi: 10.1042/bj0680348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen L. B., Keynes R. D., Hille B. Light scattering and birefringence changes during nerve activity. Nature. 1968 May 4;218(5140):438–441. doi: 10.1038/218438a0. [DOI] [PubMed] [Google Scholar]
  8. DALTON A. J., FELIX M. D. A comparative study of the Golgi complex. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):79–84. doi: 10.1083/jcb.2.4.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duke J. A., McKay R., Botts J. Conformational change accompanying modification of myosin ATPase. Biochim Biophys Acta. 1966 Nov 8;126(3):600–603. doi: 10.1016/0926-6585(66)90022-7. [DOI] [PubMed] [Google Scholar]
  10. Eakin R. M., Brandenburger J. L. Osmic staining of amphibian and gastropod photoreceptors. J Ultrastruct Res. 1970 Mar;30(5):619–641. doi: 10.1016/s0022-5320(70)90056-0. [DOI] [PubMed] [Google Scholar]
  11. Ellman G. L., Sullivan C. V. Sulfhydryl reactivity in the central nervous system: effects of electro-shock. Exp Neurol. 1965 Oct;13(2):191–197. doi: 10.1016/0014-4886(65)90108-1. [DOI] [PubMed] [Google Scholar]
  12. FREUNDL G., GERLACH J., TURBA F. DAS VERHALTEN VON SULFHYDRYLGRUPPEN IN GEHIRNPROTEINEN BEI ELEKTRISCHER REIZUNG. Biochem Z. 1964 Dec 7;341:9–14. [PubMed] [Google Scholar]
  13. FRIEDMANN E., MARRIAN D. H., SIMONREUSS I. Antimitotic action of maleimide and related substances. Br J Pharmacol Chemother. 1949 Mar;4(1):105–108. doi: 10.1111/j.1476-5381.1949.tb00521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRIEND D. S., MURRAY M. J. OSMIUM IMPREGNATION OF THE GOLGI APPARATUS. Am J Anat. 1965 Jul;117:135–149. doi: 10.1002/aja.1001170109. [DOI] [PubMed] [Google Scholar]
  15. Friend D. S., Brassil G. E. Osmium staining of endoplasmic reticulum and mitochondria in the rat adrenal cortex. J Cell Biol. 1970 Aug;46(2):252–266. doi: 10.1083/jcb.46.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HANKER J. S., SEAMAN A. R., WEISS L. P., UENO H., BERGMAN R. A., SELIGMAN A. M. OSMIOPHILIC REAGENTS: NEW CYTOCHEMICAL PRINCIPLE FOR LIGHT AND ELECTRON MICROSCOPY. Science. 1964 Nov 20;146(3647):1039–1043. doi: 10.1126/science.146.3647.1039. [DOI] [PubMed] [Google Scholar]
  18. HECHTER O. ROLE OF WATER STRUTURE IN THE MOLECULAR ORGANIZATION OF CELL MEMBRANES. Fed Proc. 1965 Mar-Apr;24:S91–102. [PubMed] [Google Scholar]
  19. HILL D. K. The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J Physiol. 1950 Oct 16;111(3-4):283–303. doi: 10.1113/jphysiol.1950.sp004480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HILL D. K. The volume change resulting from stimulation of a giant nerve fibre. J Physiol. 1950 Oct 16;111(3-4):304–327. doi: 10.1113/jphysiol.1950.sp004481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hanker J. S., Kasler F., Bloom M. G., Copeland J. S., Seligman A. M. Coordination polymers of osmium: the nature of osmium black. Science. 1967 Jun 30;156(3783):1737–1738. doi: 10.1126/science.156.3783.1737. [DOI] [PubMed] [Google Scholar]
  22. Hasselbach W., Elfvin L. G. Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy. J Ultrastruct Res. 1967 Mar;17(5):598–622. doi: 10.1016/s0022-5320(67)80143-6. [DOI] [PubMed] [Google Scholar]
  23. Hill D. K., Keynes R. D. Opacity changes in stimulated nerve. J Physiol. 1949 May 15;108(3):278–281. [PMC free article] [PubMed] [Google Scholar]
  24. Holt S. J., Hicks R. M. The importance of osmiophilia in the production of stable azoindoxyl complexes of high contrast for combined enzyme cytochemistry and electron microscopy. J Cell Biol. 1966 May;29(2):361–366. doi: 10.1083/jcb.29.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Holtzman E., Freeman A. R., Kashner L. A. A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons. J Cell Biol. 1970 Feb;44(2):438–445. doi: 10.1083/jcb.44.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huneeus-Cox F., Fernandez H. L., Smith B. H. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys J. 1966 Sep;6(5):675–689. doi: 10.1016/S0006-3495(66)86686-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ishikawa H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol. 1968 Jul;38(1):51–66. doi: 10.1083/jcb.38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Korn E. D. 3. Modification of oleic acid during fixation of Amoebae by osmium tetroxide. Biochim Biophys Acta. 1966 Apr 4;116(2):325–335. doi: 10.1016/0005-2760(66)90015-4. [DOI] [PubMed] [Google Scholar]
  29. Korn E. D. II. Synthesis of bis(methyl 9,10-dihydroxystearate)osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material. Biochim Biophys Acta. 1966 Apr 4;116(2):317–324. doi: 10.1016/0005-2760(66)90014-2. [DOI] [PubMed] [Google Scholar]
  30. MARINOZZI V. CYTOCHIMIE ULTRASTRUCTURALE DU NUCL'EOLE--RNA ET PROT'EINES INTRANUCL'EOLAIRES. J Ultrastruct Res. 1964 Jun;10:433–456. doi: 10.1016/s0022-5320(64)80021-6. [DOI] [PubMed] [Google Scholar]
  31. PETERSON R. P., PEPE F. The fine structure of inhibitory synapses in the crayfish. J Biophys Biochem Cytol. 1961 Oct;11:157–169. doi: 10.1083/jcb.11.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  33. Peracchia C. A system of parallel septa in crayfish nerve fibers. J Cell Biol. 1970 Jan;44(1):125–133. doi: 10.1083/jcb.44.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perkins M. S., Wright E. B. The crustacean axon. I. Metabolic properties: ATPase activity, calcium binding, and bioelectric correlations. J Neurophysiol. 1969 Nov;32(6):930–947. doi: 10.1152/jn.1969.32.6.930. [DOI] [PubMed] [Google Scholar]
  35. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. ROGERS G. E. Electron microscopy of wool. J Ultrastruct Res. 1959 Mar;2(3):309–330. doi: 10.1016/s0022-5320(59)80004-6. [DOI] [PubMed] [Google Scholar]
  37. Riemersma J. C. Osmium tetroxide fixation of lipids for electron microscopy. A possible reaction mechanism. Biochim Biophys Acta. 1968 Jul 1;152(4):718–727. doi: 10.1016/0005-2760(68)90118-5. [DOI] [PubMed] [Google Scholar]
  38. Robinson J. D. Interaction between protein sulphydryl groups and lipid double bonds in biological membranes. Nature. 1966 Oct 8;212(5058):199–200. doi: 10.1038/212199a0. [DOI] [PubMed] [Google Scholar]
  39. Robinson J. D. Structural changes in microsomal suspensions. 3. Formation of lipid peroxides. Arch Biochem Biophys. 1965 Oct;112(1):170–179. doi: 10.1016/0003-9861(65)90025-1. [DOI] [PubMed] [Google Scholar]
  40. SMITH H. M. Effects of sulfhydryl blockade on axonal function. J Cell Physiol. 1958 Apr;51(2):161–171. doi: 10.1002/jcp.1030510203. [DOI] [PubMed] [Google Scholar]
  41. STOECKENIUS W., MAHR S. C. STUDIES ON THE REACTION OF OSMIUM TETROXIDE WITH LIPIDS AND RELATED COMPOUNDS. Lab Invest. 1965 Jun;14:1196–1207. [PubMed] [Google Scholar]
  42. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  43. TOBIAS J. M. Qualitative observations on visible changes in single frog, squid and other axones subjected to electrical polarization; implications for excitation and conduction. J Cell Physiol. 1951 Feb;37(1):91–105. doi: 10.1002/jcp.1030370107. [DOI] [PubMed] [Google Scholar]
  44. Tasaki I., Watanabe A., Sandlin R., Carnay L. Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A. 1968 Nov;61(3):883–888. doi: 10.1073/pnas.61.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. UNGAR G., ASCHHEIM I., PSYCHOYOS S., ROMANO D. V. Reversible changes of protein configuration in stimulated nerve structures. J Gen Physiol. 1957 Mar 20;40(4):635–652. doi: 10.1085/jgp.40.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. del CASTILLO-NICOLAU J., HUFSCHMIDT H. J. Reversible poisoning of nerve fibers by heavy-metal ions. Nature. 1951 Jan 27;167(4239):146–147. doi: 10.1038/167146b0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES