Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Oct 1;51(1):216–222. doi: 10.1083/jcb.51.1.216

ELECTRON MICROSCOPE HISTOCHEMICAL EVIDENCE FOR A PARTIAL OR TOTAL BLOCK OF THE TRICARBOXYLIC ACID CYCLE IN THE MITOCHONDRIA OF PRESYNAPTIC AXON TERMINALS

Ferenc Hajós 1, Sándor Kerpel-Fronius 1
PMCID: PMC2108242  PMID: 5111875

Abstract

Respiration-linked, massive accumulation of Sr2+ is used to reveal the coupled oxidation of pyruvate, α-oxoglutarate, succinate, and malate by in situ mitochondria. All of these substrates were actively oxidized in the dendritic and perikaryal mitochondria, but no α-oxoglutarate or succinate utilization could be demonstrated in the mitochondria of the presynaptic axon terminals. A block at an early step of α-oxoglutarate and succinate oxidation is proposed to account for the negative histochemical results, since the positive reaction with pyruvate and malate proves that these mitochondria possess an intact respiratory chain and energy-coupling mechanism essential for Sr2+ accumulation. This indicates that the mitochondria in the axon terminals would be able to generate energy for synaptic function with at least some of the respiratory substrates. With regard to the block in the tricarboxylic acid cycle, the oxaloacetate necessary for citrate formation is suggested to be provided by fixation of CO2 into some of the pyruvate.

Full Text

The Full Text of this article is available as a PDF (786.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  2. Cheng S. C., Nakamura R., Waelsch H. Relative contribution of carbon dioxide fixation and acetyl-coA pathways in two nervous tissues. Nature. 1967 Dec 2;216(5118):928–929. doi: 10.1038/216928a0. [DOI] [PubMed] [Google Scholar]
  3. Felicioli R. A., Gabrielli F., Rossi C. A. Pyruvate carboxylase activity of mammalian brain cortex. Life Sci. 1967 Jan 15;6(2):133–143. doi: 10.1016/0024-3205(67)90341-4. [DOI] [PubMed] [Google Scholar]
  4. Fox C. A., Hillman D. E., Siegesmund K. A., Dutta C. R. The primate cerebellar cortex: a Golgi and electron microscopic study. Prog Brain Res. 1967;25:174–225. doi: 10.1016/S0079-6123(08)60965-6. [DOI] [PubMed] [Google Scholar]
  5. GRAY E. G. The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat. 1961 Jul;95:345–356. [PMC free article] [PubMed] [Google Scholar]
  6. Greenawalt J. W., Carafoli E. Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J Cell Biol. 1966 Apr;29(1):37–61. doi: 10.1083/jcb.29.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hámori J., Szentágothai J. Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp Brain Res. 1966;2(1):35–48. doi: 10.1007/BF00234359. [DOI] [PubMed] [Google Scholar]
  8. Kalina M., Gahan P. B. A quantitative study of the validity of the histochemical demonstration for pyridine nucleotide-linked dehydrogenases. Histochemie. 1965;5(5):430–436. doi: 10.1007/BF00306294. [DOI] [PubMed] [Google Scholar]
  9. Kerpel-Fronius S., Hajós F. A method for the electron microscopic demonstration of cytochrome oxidase in fresh and formalin-prefixed tissues. Histochemie. 1967;10(3):216–223. doi: 10.1007/BF00304868. [DOI] [PubMed] [Google Scholar]
  10. Kerpel-Fronius S., Hajós F. Electron microscopic demonostration of energy production and coupled respiration of in situ mitochondria. J Histochem Cytochem. 1970 Oct;18(10):740–745. doi: 10.1177/18.10.740. [DOI] [PubMed] [Google Scholar]
  11. Kerpel-Fronius S., Hajós F. The use of ferricyanide for the light and electron microscopic demonstration of succinic dehydrogenase activity. Histochemie. 1968;14(4):343–351. doi: 10.1007/BF00304258. [DOI] [PubMed] [Google Scholar]
  12. MCMILLAN P. J., MORTENSEN R. A. The metabolism of brain pyruvate and acetate in the tricarboxylic acid cycle. J Biol Chem. 1963 Jan;238:91–93. [PubMed] [Google Scholar]
  13. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SZENTAGOTHAI J. Zum elementaren Bau der interneuronalen Synapse. Acta Anat (Basel) 1957;30(1-4):827–841. [PubMed] [Google Scholar]
  15. Salganicoff L., Koeppe R. E. Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J Biol Chem. 1968 Jun 25;243(12):3416–3420. [PubMed] [Google Scholar]
  16. WAELSCH H., BERL H. W., ROSSI C. A., CLARKE D. D., PURPURA D. P. QUANTITATIVE ASPECTS OF CO2 FIXATION IN MAMMALIAN BRAIN IN VIVO. J Neurochem. 1964 Oct;11:717–728. doi: 10.1111/j.1471-4159.1964.tb06117.x. [DOI] [PubMed] [Google Scholar]
  17. WARAVDEKAR V. S., GOLDBLATT P. J., TRUMP B. F., GRIFFIN C. C., STOWELL R. E. EFFECT OF FREEZING AND THAWING ON CERTAIN NUCLEAR AND MITOCHONDRIAL ENZYMES OF MOUSE LIVER. J Histochem Cytochem. 1964 Jul;12:498–503. doi: 10.1177/12.7.498. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES