Abstract
The differentiating mouse oviduct has been used for the study of centriole morphogenesis because its epithelium is extensively ciliated and centriole formation occurs in a brief period after birth. Proliferative elements, consisting of an extensive fibrillar meshwork encrusted with 75 mµ granules, were encountered at all ages, but were the only centriole precursors present in younger animals (2–3 days). These large aggregates were found either physically associated with a mature centriole or alone, but never associated with procentrioles. It is likely, therefore, that although proliferative elements may be derived from preexisting centrioles, they do not directly produce new centrioles. An intermediate structure, the condensation form, found primarily in older animals (4–6 days), and produced by the packing of the proliferative element material, gives rise to daughter procentrioles. This association of procentriole and condensation form has been called a generative complex. Condensation forms undergo various stages of depletion, producing hollow spheres with thin walls or small osmiophilic aggregates as procentrioles grow in length and assemble their microtubules. From these observations it is concluded that synthesis of microtubular precursor protein is mediated by the mature centriole and that this protein is packaged into many condensation forms in order to allow the rapid assembly of a large number of centrioles in a brief period of time.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behnke O. Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J Cell Biol. 1967 Aug;34(2):697–701. doi: 10.1083/jcb.34.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coyne B., Rosenbaum J. L. Flagellar elongation and shortening in chlamydomonas. II. Re-utilization of flagellar proteins. J Cell Biol. 1970 Dec;47(3):777–781. doi: 10.1083/jcb.47.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIRKSEN E. R. The presence of centrioles in artificially activated sea urchin eggs. J Biophys Biochem Cytol. 1961 Oct;11:244–247. doi: 10.1083/jcb.11.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frasca J. M., Auerbach O., Parks V. R., Stoeckenius W. Electron microscopic observations of bronchial epithelium. II. Filosomes. Exp Mol Pathol. 1967 Aug;7(1):92–104. doi: 10.1016/0014-4800(67)90039-1. [DOI] [PubMed] [Google Scholar]
- Frisch D., Farbman A. I. Development of order during ciliogenesis. Anat Rec. 1968 Oct;162(2):221–232. doi: 10.1002/ar.1091620209. [DOI] [PubMed] [Google Scholar]
- Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalnins V. I., Porter K. R. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch Mikrosk Anat. 1969;100(1):1–30. doi: 10.1007/BF00343818. [DOI] [PubMed] [Google Scholar]
- Outka D. E., Kluss B. C. The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis. J Cell Biol. 1967 Nov;35(2):323–346. doi: 10.1083/jcb.35.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins F. O. Formation of centriole and centriole-like structures during meiosis and mitosis in Labyrinthula sp. (Rhizopodea, Labyrinthulida). An electron-microscope study. J Cell Sci. 1970 May;6(3):629–653. doi: 10.1242/jcs.6.3.629. [DOI] [PubMed] [Google Scholar]
- Sorokin S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968 Jun;3(2):207–230. doi: 10.1242/jcs.3.2.207. [DOI] [PubMed] [Google Scholar]
- Steinman R. M. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am J Anat. 1968 Jan;122(1):19–55. doi: 10.1002/aja.1001220103. [DOI] [PubMed] [Google Scholar]
- Steinman R. M. Inhibitory effects of colchicine on ciliogenesis in ectoderm of Xenopus laevis. J Ultrastruct Res. 1970 Feb;30(3):423–440. doi: 10.1016/s0022-5320(70)80073-9. [DOI] [PubMed] [Google Scholar]
- Stephens R. E. Thermal fractionation of outer fiber doublet microtubules into A- and B-subfiber components. A- and B-tubulin. J Mol Biol. 1970 Feb 14;47(3):353–363. doi: 10.1016/0022-2836(70)90307-4. [DOI] [PubMed] [Google Scholar]
- Stockinger L., Cireli E. Eine bisher unbekannte Art der Zentriolenvermehrung. Z Zellforsch Mikrosk Anat. 1965 Dec 10;68(5):733–740. [PubMed] [Google Scholar]