Abstract
We have examined the ultrastructure of mitochondria as it relates to energy metabolism in the intact cell. Oxidative phosphorylation was induced in ultrastructurally intact Ehrlich ascites tumor cells by rapidly generating intracellular adenosine diphosphate from endogenous adenosine triphosphate by the addition of 2-deoxyglucose. The occurrence of oxidative phosphorylation was ascertained indirectly by continuous and synchronous monitoring of respiratory rate, fluorescence of pyridine nucleotide, and 90° light-scattering. Oxidative phosphorylation was confirmed by direct enzymatic analysis of intracellular adenine nucleotides and by determination of intracellular inorganic orthophosphate. Microsamples of cells rapidly fixed for electron microscopy revealed that, in addition to oxidative phosphorylation, an orthodox → condensed ultrastructural transformation occurred in the mitochondria of all cells in less than 6 sec after the generation of adenosine diphosphate by 2-deoxyglucose. A 90° light-scattering increase, which also occurs at this time, showed a t ½ of only 25 sec which agreed temporally with a slower orthodox → maximally condensed mitochondrial transformation. Neither oxidative phosphorylation nor ultrastructural transformation could be initiated in mitochondria in intact cells by the intracellular generation of adenosine diphosphate in the presence of uncouplers of oxidative phosphorylation. Partial and complete inhibition of oxidative phosphorylation by oligomycin resulted in a positive relationship to partial and complete inhibition of 2-deoxyglucose-induced ultrastructural transformation in the mitochondria in these cells. The data presented reveal that an orthodox → condensed ultrastructural transformation is linked to induced oxidative phosphorylation in mitochondria in the intact ascites tumor cell.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buffa P., Guarriera-Bobyleva V., Muscatello U., Pasquali-Ronchetti I. Conformational changes of mitochondria associated with uncoupling of oxidative phosphorylation in vivo and in vitro. Nature. 1970 Apr 18;226(5242):272–274. doi: 10.1038/226272a0. [DOI] [PubMed] [Google Scholar]
- CHANCE B., HESS B. Metabolic control mechanisms. IV. The effect of glucose upon the steady state of respiratory enzymes in the ascites cell. J Biol Chem. 1959 Sep;234:2421–2427. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- CLARK L. C., Jr, WOLF R., GRANGER D., TAYLOR Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953 Sep;6(3):189–193. doi: 10.1152/jappl.1953.6.3.189. [DOI] [PubMed] [Google Scholar]
- DRYER R. L., TAMMES A. R., ROUTH J. I. The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine. J Biol Chem. 1957 Mar;225(1):177–183. [PubMed] [Google Scholar]
- ESTABROOK R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem. 1962 Sep;4:231–245. doi: 10.1016/0003-2697(62)90006-4. [DOI] [PubMed] [Google Scholar]
- Goyer R. A., Krall R. Ultrastructural transformation in mitochondria isolated from kidneys of normal and lead-intoxicated rats. J Cell Biol. 1969 May;41(2):393–400. doi: 10.1083/jcb.41.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IBSEN K. H., COE E. L., McKEE R. W. Interrelationships of metabolic pathways in the Ehrlich ascites carcinoma cells. I. Glycolysis and respiration (Crabtree effect). Biochim Biophys Acta. 1958 Nov;30(2):384–400. doi: 10.1016/0006-3002(58)90064-7. [DOI] [PubMed] [Google Scholar]
- Jasper D. K., Bronk J. R. Studies on the physiological and structural characteristics of rat intestinal mucosa. Mitochondrial structural changes during amino acid absorption. J Cell Biol. 1968 Aug;38(2):277–291. doi: 10.1083/jcb.38.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCOMB R. B., YUSHOK W. D. METABOLISM OF ASCITES TUMOR CELLS. IV. ENZYMATIC REACTIONS INVOLVED IN ADENOSINETRIPHOSPHATE DEGRADATION INDUCED BY 2-DEOXYGLUCOSE. Cancer Res. 1964 Feb;24:198–205. [PubMed] [Google Scholar]
- PACKER L., GOLDER R. H. Correlation of structural and metabolic changes accompanying the addition of carbohydrates to Ehrlich ascites tumor cells. J Biol Chem. 1960 May;235:1234–1240. [PubMed] [Google Scholar]
- Rose I. A., Warms J. V. Mitochondrial hexokinase. Release, rebinding, and location. J Biol Chem. 1967 Apr 10;242(7):1635–1645. [PubMed] [Google Scholar]
- SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
- Williams C. H., Vail W. J., Harris R. A., Caldwell M., Green D. E., Valdivia E. Conformational basis of energy transduction in membrane systems. 8. Configurational changes of mitochondria in situ and in vitro. J Bioenerg. 1970 Jul;1(2):147–180. doi: 10.1007/BF01515979. [DOI] [PubMed] [Google Scholar]
- YUSHOK W. D. METABOLISM OF ASCITES TUMOR CELLS. II. INHIBITION OF RESPIRATION BY GLYCOLYZABLE AND NONGLYCOLYZABLE SUGARS PHOSPHORYLATED BY HEXOKINASE. Cancer Res. 1964 Feb;24:187–192. [PubMed] [Google Scholar]