Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Aug 1;50(2):484–497. doi: 10.1083/jcb.50.2.484

CYTOPLASMIC FILAMENTS IN DEVELOPING AND ADULT VERTEBRATE SMOOTH MUSCLE

Y Uehara 1, G R Campbell 1, G Burnstock 1
PMCID: PMC2108268  PMID: 5165265

Abstract

An extensive study of adult and developing smooth muscle has revealed the widespread occurrence of a distinct filament with an average diameter of about 100 A (termed the 100 A filament). Unlike that of myofilaments, their appearance in longitudinal section is uniform, but in transverse section they have a round profile, occasionally exhibiting a less electron-opaque core. The 100 A filaments are almost invariably preserved under a variety of fixation procedures, whereas myofilaments, particularly the thicker filaments, are preserved inconsistently. The 100 A filaments appear to be randomly oriented throughout the cytoplasm, either singly or in small groups, although they are sometimes concentrated in the juxtanuclear region of the smooth muscle cells. The intimate association of 100 A filaments with dark bodies, in both developing and adult smooth muscle cells, may indicate that these filaments either play a role in dark body formation or, at least, constitute a part of the dark body. The 100 A filaments are conspicuous in developing smooth muscle cells and occasionally form networks or clusters; they appear to decrease in relative number as maturation proceeds, but considerable numbers are still present in adult tissue.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett T., Cobb J. L. Studies on the avian gizzard: the development of the gizzard and its innervation. Z Zellforsch Mikrosk Anat. 1969;98(4):599–621. doi: 10.1007/BF00347035. [DOI] [PubMed] [Google Scholar]
  2. Biberfeld P., Ericsson J. L., Perlmann P., Raftell M. Increased occurrence of cytoplasmic filaments in in vitro propagated rat liver epithelial cells. Exp Cell Res. 1965 Aug;39(1):301–305. doi: 10.1016/0014-4827(65)90034-0. [DOI] [PubMed] [Google Scholar]
  3. Cohen C., Longley W. Tropomyosin paracrystals formed by divalent cations. Science. 1966 May 6;152(3723):794–796. doi: 10.1126/science.152.3723.794. [DOI] [PubMed] [Google Scholar]
  4. Cooke P. H., Chase R. H., Cortés J. M. Thick filaments resembling myosin in electrophoretically-extracted vertebrate smooth muscle. Exp Cell Res. 1970 May;60(2):237–246. doi: 10.1016/0014-4827(70)90510-0. [DOI] [PubMed] [Google Scholar]
  5. ELLIOTT G. F. X-RAY DIFFRACTION STUDIES ON STRIATED AND SMOOTH MUSCLES. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:467–472. doi: 10.1098/rspb.1964.0057. [DOI] [PubMed] [Google Scholar]
  6. Elliott G. F. Variations of the contractile apparatus in smooth and striated muscles. X-ray diffraction studies at rest and in contraction. J Gen Physiol. 1967 Jul;50(6 Suppl):171–184. doi: 10.1085/jgp.50.6.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAMOIR G., LASZT L. [Tropomyosin B of bovine carotids]. Biochim Biophys Acta. 1962 May 21;59:365–375. doi: 10.1016/0006-3002(62)90186-5. [DOI] [PubMed] [Google Scholar]
  8. HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
  9. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  10. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JAISLE F. [Tropomyosin in human myometrium]. Arch Gynakol. 1960;194:277–286. doi: 10.1007/BF00668797. [DOI] [PubMed] [Google Scholar]
  12. Kelly R. E., Rice R. V. Ultrastructural studies on the contractile mechanism of smooth muscle. J Cell Biol. 1969 Sep;42(3):683–694. doi: 10.1083/jcb.42.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lane B. P. Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J Cell Biol. 1965 Oct;27(1):199–213. doi: 10.1083/jcb.27.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MARK J. S. An electron microscope study of uterine smooth muscle. Anat Rec. 1956 Jul;125(3):473–493. doi: 10.1002/ar.1091250306. [DOI] [PubMed] [Google Scholar]
  16. NEEDHAM D. M. PROTEINS OF THE CONTRACTILE MECHANISM OF MAMMALIAN SMOOTH MUSCLE AND THEIR POSSIBLE LOCATION IN THE CELL. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:517–524. doi: 10.1098/rspb.1964.0067. [DOI] [PubMed] [Google Scholar]
  17. Nonomura Y. Myofilaments in smooth muscle of guinea pigs taenia coli. J Cell Biol. 1968 Dec;39(3):741–745. doi: 10.1083/jcb.39.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PEASE D. C., MOLINARI S. Electron microscopy of muscular arteries; pial vessels of43 the cat and monkey. J Ultrastruct Res. 1960 Jun;3:447–468. doi: 10.1016/s0022-5320(60)90022-8. [DOI] [PubMed] [Google Scholar]
  19. PROSSER C. L., BURNSTOCK G., KAHN J. Conduction in smooth muscle: comparative structural properties. Am J Physiol. 1960 Sep;199:545–552. doi: 10.1152/ajplegacy.1960.199.3.545. [DOI] [PubMed] [Google Scholar]
  20. Panner B. J., Honig C. R. Filament ultrastructure and organization in vertebrate smooth muscle. Contraction hypothesis based on localization of actin and myosin. J Cell Biol. 1967 Nov;35(2):303–321. doi: 10.1083/jcb.35.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Panner B. J., Honig C. R. Locus and state of aggregation of myosin in tissue sections of vertebrate smooth muscle. J Cell Biol. 1970 Jan;44(1):52–61. doi: 10.1083/jcb.44.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Popescu L. M., Ionescu N. On the equivalence between dense bodies and Z-bands. Experientia. 1970 Jun 15;26(6):642–643. doi: 10.1007/BF01898737. [DOI] [PubMed] [Google Scholar]
  23. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]
  24. TANAKA Y. FIBRILLAR STRUCTURES IN THE CELLS OF BLOODFORMING ORGANS. J Natl Cancer Inst. 1964 Sep;33:467–485. [PubMed] [Google Scholar]
  25. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES