Abstract
The intranuclear spindle of yeast has an electron-opaque body at each pole. These spindle plaques lie on the nuclear envelope. During mitosis the spindle elongates while the nuclear membranes remain intact. After equatorial constriction there are two daughted nuclei, each with one spindle plaque. The spindle plaque then duplicates so that two side-by-side plaques are produced. These move rapidly apart and rotate so that they bracket a stable 0.8 µm spindle. Later, during mitosis, this spindle elongates, etc. Yeast cells placed on sporulation medium soon enter meiosis. After 4 hr the spindle plaques of the more mature cells duplicate, producing a stable side-by-side arrangement. Subsequently the plaques move apart to bracket a 0.8 µm spindle which immediately starts to elongate. When this meiosis I spindle reaches its maximum length of 3–5 µm, each of the plaques at the poles of the spindle duplicates and the resulting side-by-side plaques increase in size. The nucleus does not divide. The large side-by-side plaques separate and bracket a short spindle of about 1 µm which elongates gradually to 2 or 3 µm. Thus there are two spindles within one nucleus at meiosis II. To the side of each of the four plaques a bulge forms on the nucleus. The four bulges enlarge while the original nucleus shrinks. These four developing ascospore nuclei are partially surrounded by cytoplasm and by a prospore wall which originates from the cytoplasmic side of the spindle plaque. Eventually the spore nuclei pinch off and the spore wall closes. In some of the larger yeast cells this development is completed after 8 hr on sporulation medium.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldrich H. C. The ultrastructure of meiosis in three species of Physarum. Mycologia. 1967 Jan-Feb;59(1):127–148. [PubMed] [Google Scholar]
- Aldrich H. C. The ultrastructure of mitosis in myxamoebae and plasmodia of Physarum flavicomum. Am J Bot. 1969 Mar;56(3):290–299. [PubMed] [Google Scholar]
- Engels F. M., Croes A. F. The synaptinemal complex in yeast. Chromosoma. 1968;25(1):104–106. doi: 10.1007/BF00338237. [DOI] [PubMed] [Google Scholar]
- Esposito M. S., Esposito R. E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics. 1969 Jan;61(1):79–89. doi: 10.1093/genetics/61.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galey F. R., Nilsson S. E. A new method for transferring sections from the liquid surface of the trough through staining solutions to the supporting film of a grid. J Ultrastruct Res. 1966 Feb;14(3):405–410. doi: 10.1016/s0022-5320(66)80057-6. [DOI] [PubMed] [Google Scholar]
- Ichida A. A., Fuller M. S. Ultrastructure of mitosis in the aquatic fungus Catenaria anguillulae. Mycologia. 1968 Jan-Feb;60(1):141–155. [PubMed] [Google Scholar]
- Kerr S. J. A comparative study of mitosis in amoebae and plasmodia of the true slime mold Didymium nigripes. J Protozool. 1967 Aug;14(3):439–445. doi: 10.1111/j.1550-7408.1967.tb02022.x. [DOI] [PubMed] [Google Scholar]
- Kubai D. F., Ris H. Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction. J Cell Biol. 1969 Feb;40(2):508–528. doi: 10.1083/jcb.40.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lessie P. E., Lovett J. S. Ultrastructural changes during sporangium formation and zoospore differentiation in Blastocladiella Emersonii. Am J Bot. 1968 Feb;55(2):220–236. [PubMed] [Google Scholar]
- Lu B. C. Meiosis in Coprinus lagopus: a comparative study with light and electron microscopy. J Cell Sci. 1967 Dec;2(4):529–536. doi: 10.1242/jcs.2.4.529. [DOI] [PubMed] [Google Scholar]
- Lynn R. R., Magee P. T. Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J Cell Biol. 1970 Mar;44(3):688–692. doi: 10.1083/jcb.44.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moens P. B. Fine structure of ascospore development in the yeast Saccharomyces cerevisiae. Can J Microbiol. 1971 Apr;17(4):507–510. doi: 10.1139/m71-084. [DOI] [PubMed] [Google Scholar]
- Moens P. B., Perkins F. O. Chromosome number of a small protist: accurate determination. Science. 1969 Dec 5;166(3910):1289–1291. doi: 10.1126/science.166.3910.1289. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinow C. F., Caten C. E. Mitosis in Aspergillus nidulans. J Cell Sci. 1969 Sep;5(2):403–431. doi: 10.1242/jcs.5.2.403. [DOI] [PubMed] [Google Scholar]
- Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth R., Halvorson H. O. Sporulation of yeast harvested during logarithmic growth. J Bacteriol. 1969 May;98(2):831–832. doi: 10.1128/jb.98.2.831-832.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westergaard M., von Wettstein D. The nucleolar cycle in an ascomycete. C R Trav Lab Carlsberg. 1970;37(10):195–237. [PubMed] [Google Scholar]