Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Sep 1;50(3):721–736. doi: 10.1083/jcb.50.3.721

MITOCHONDRIAL BIOGENESIS IN NEUROSPORA CRASSA

I. An Ultrastructural and Biochemical Investigation of the Effects of Anaerobiosis and Chloramphenicol Inhibition

Neil Howell 1, Carol A Zuiches 1, Kenneth D Munkres 1
PMCID: PMC2108288  PMID: 4329155

Abstract

The isolation of a new class of mutants permitting facultative anaerobiosis in Neurospora crassa is described. Backcross analyses to the obligate aerobe prototroph (An -) indicate single nuclear gene inheritance (An -/An +). An + and An - are indistinguishable in morphology and growth rates under aerobic conditions. Anaerobic growth requires nutritional supplements that are dispensable for aerobic growth. Conidiogenesis, conidial germination, and vegetative growth rate are suppressed by anaerobiosis. An + mutants produce substantial quantities of ethanol under anaerobic conditions. Anaerobiosis and chloramphenicol both affect mitochondrial enzyme activity and morphology. Chloramphenicol inhibition leads to reduction in cytochrome oxidase and swollen mitochondria with few cristae. Anaerobiosis leads to reduction in both cytochrome oxidase and malate dehydrogenase activities, enlarged mitochondria with fewer cristae, enlarged nuclei, and other alterations in cellular morphology. The fine structure of anaerobically grown cells changes with the time of anaerobic growth. We conclude that either inhibition of mitochondrial membrane synthesis or inhibition of respiration might lead to the observed alterations in mitochondria.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. Asai J., Blondin G. A., Vail W. J., Green D. E. The mechanism of mitochondrial swelling. IV. Configurational changes during swelling of beef heart mitochondria. Arch Biochem Biophys. 1969 Jul;132(2):524–544. doi: 10.1016/0003-9861(69)90396-8. [DOI] [PubMed] [Google Scholar]
  3. BACHMANN B. J., BONNER D. M. Protoplasts from Neurospora crassa. J Bacteriol. 1959 Oct;78:550–556. doi: 10.1128/jb.78.4.550-556.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck D. P., Decker G. L., Greenawalt J. W. Ultrastructure of striated inclusions in Neurospora. J Ultrastruct Res. 1970 Nov;33(3):245–251. doi: 10.1016/s0022-5320(70)90019-5. [DOI] [PubMed] [Google Scholar]
  5. Berezney R., Funk L. K., Crane F. L. Nuclear electron transport. I. Electron transport enzymes in bovine liver nuclei and nuclear membrane. Biochem Biophys Res Commun. 1970 Jan 6;38(1):93–98. doi: 10.1016/0006-291x(70)91088-0. [DOI] [PubMed] [Google Scholar]
  6. Blondin G. A., Green D. E. Mechanism of mitochondrial swelling. 3. Two forms of energized swelling. Arch Biochem Biophys. 1969 Jul;132(2):509–523. doi: 10.1016/0003-9861(69)90395-6. [DOI] [PubMed] [Google Scholar]
  7. Blondin G. A., Vail W. J., Green D. E. The mechanism of mitochondrial swelling. II. Pseudoenergized swelling in the presence of alkali metal salts. Arch Biochem Biophys. 1969 Jan;129(1):158–172. doi: 10.1016/0003-9861(69)90162-3. [DOI] [PubMed] [Google Scholar]
  8. Brewer J. H., Allgeier D. L. Safe Self-contained Carbon Dioxide-Hydrogen Anaerobic System. Appl Microbiol. 1966 Nov;14(6):985–988. doi: 10.1128/am.14.6.985-988.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Criddle R. S., Schatz G. Promitochondria of anaerobically grown yeast. I. Isolation and biochemical properties. Biochemistry. 1969 Jan;8(1):322–334. doi: 10.1021/bi00829a045. [DOI] [PubMed] [Google Scholar]
  10. Damsky C. H., Nelson W. M., Claude A. Mitochondria in anaerobically-grown, lipid-limited brewer's yeast. J Cell Biol. 1969 Oct;43(1):174–179. doi: 10.1083/jcb.43.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Deken R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966 Aug;44(2):149–156. doi: 10.1099/00221287-44-2-149. [DOI] [PubMed] [Google Scholar]
  12. Edwards D. L., Woodward D. O. An altered cytochrome oxidase in a cytoplasmic mutant of Neurospora. FEBS Lett. 1969 Aug;4(3):193–196. doi: 10.1016/0014-5793(69)80232-2. [DOI] [PubMed] [Google Scholar]
  13. FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HOLZER H. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb Symp Quant Biol. 1961;26:277–288. doi: 10.1101/sqb.1961.026.01.034. [DOI] [PubMed] [Google Scholar]
  15. Kellerman G. M., Biggs D. R., Linnane A. W. Biogenesis of mitochondria. XI. A comparison of the effects of growth-limiting oxygen tension, intercalating agents, and antibiotics on the obligate aerobe Candida parapsilosis. J Cell Biol. 1969 Aug;42(2):378–391. doi: 10.1083/jcb.42.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kobr M. J., Bianchi D. E., Oulevey N., Turian G. The effect of oxygen tension on growth, conidiation, and alcohol production of Neurospora crassa. Can J Microbiol. 1967 Jul;13(7):805–809. doi: 10.1139/m67-106. [DOI] [PubMed] [Google Scholar]
  17. Kobr M. J., Vanderhaeghe F., Combépine G. Particulate enzymes of the glyoxylate cycle in Neurospora crassa. Biochem Biophys Res Commun. 1969 Nov 6;37(4):640–645. doi: 10.1016/0006-291x(69)90858-4. [DOI] [PubMed] [Google Scholar]
  18. Marchant R., Smith D. G. The effect of chloramphenicol on growth and mitochondrial structure of Pythium ultimum. J Gen Microbiol. 1968 Mar;50(3):391–397. doi: 10.1099/00221287-50-3-391. [DOI] [PubMed] [Google Scholar]
  19. Neupert W., Sebald W., Schwab A. J., Massinger P., Bücher T. Incorporation in vivo of 14C-labelled amino acids into the proteins of mitochondrial ribosomes from Neurospora crassa sensitive to cycloheximide and insensitive to Chloramphenicol. Eur J Biochem. 1969 Oct;10(3):589–591. doi: 10.1111/j.1432-1033.1969.tb00730.x. [DOI] [PubMed] [Google Scholar]
  20. Paltauf F., Schatz G. Promitochondria of anaerobicallly grown yeast. II. Lipid composition. Biochemistry. 1969 Jan;8(1):335–339. doi: 10.1021/bi00829a046. [DOI] [PubMed] [Google Scholar]
  21. Penniston J. T., Harris R. A., Asai J., Green D. E. The conformational basis of energy transformations in membrane systems. I. Conformational changes in mitochondria. Proc Natl Acad Sci U S A. 1968 Feb;59(2):624–631. doi: 10.1073/pnas.59.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perkins D D. New Markers and Multiple Point Linkage Data in Neurospora. Genetics. 1959 Nov;44(6):1185–1208. doi: 10.1093/genetics/44.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Plattner H., Schatz G. Promitochondria of anaerobically grown yeast. 3. Morphology. Biochemistry. 1969 Jan;8(1):339–343. doi: 10.1021/bi00829a047. [DOI] [PubMed] [Google Scholar]
  24. Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SHERMAN F., SLONIMSKI P. P. RESPIRATION-DEFICIENT MUTANTS OF YEAST. II. BIOCHEMISTRY. Biochim Biophys Acta. 1964 Jul 15;90:1–15. doi: 10.1016/0304-4165(64)90113-8. [DOI] [PubMed] [Google Scholar]
  26. Smith D. G., Marchant R., Maroudas N. G., Wilkie D. A comparative study of the mitochondrial structure of petite strains of Saccharomyces cerevisiae. J Gen Microbiol. 1969 Apr;56(1):47–54. doi: 10.1099/00221287-56-1-47. [DOI] [PubMed] [Google Scholar]
  27. Tatum E. L., Barratt R. W., Cutter V. M., Jr Chemical Induction of Colonial Paramorphs in Neurospora and Syncephalastrum. Science. 1949 May 20;109(2838):509–511. doi: 10.1126/science.109.2838.509. [DOI] [PubMed] [Google Scholar]
  28. WARBURG O. ANNUAL REVIEW OF BIOCHEMISTRY. PREFATORY CHAPTER. Annu Rev Biochem. 1964;33:1–14. doi: 10.1146/annurev.bi.33.070164.000245. [DOI] [PubMed] [Google Scholar]
  29. Wallace P. G., Huang M., Linnane A. W. The biogenesis of mitochondria. II. The influence of medium composition on the cytology of anaerobically grown Saccharomyces cerevisiae. J Cell Biol. 1968 May;37(2):207–220. doi: 10.1083/jcb.37.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watson K., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. 13. The isolation of mitochondrial structures from anaerobically grown Saccharomyces cerevisiae. J Cell Biol. 1970 Jul;46(1):88–96. doi: 10.1083/jcb.46.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiss B., Turian G. A study of conidiation in Neurospora crassa. J Gen Microbiol. 1966 Sep;44(3):407–418. doi: 10.1099/00221287-44-3-407. [DOI] [PubMed] [Google Scholar]
  32. YOTSUYANAGI Y. [Study of yeast mitochondria. I. Variations in mitochondrial ultrastructure during the aerobic growth cycle]. J Ultrastruct Res. 1962 Aug;7:121–140. doi: 10.1016/s0022-5320(62)80031-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES