Abstract
For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bulger R. E. Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J Cell Biol. 1969 Jan;40(1):79–94. doi: 10.1083/jcb.40.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groniowski J., Biczyskowa W., Walski M. Electron microscope studies on the surface coat of the nephron. J Cell Biol. 1969 Mar;40(3):585–601. doi: 10.1083/jcb.40.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardin J. H., Spicer S. S., Greene W. B. Ultrastructural localization of antimonate deposits in rabbit heterophil and human neutrophil leukocytes. Lab Invest. 1969 Sep;21(3):214–224. [PubMed] [Google Scholar]
- Hardin J. H., Spicer S. S. Ultrastructure of neuronal nucleoli of rat trigeminal gnglia: comparison of routine with pyroantimonate-osmium tetroxide fixation. J Ultrastruct Res. 1970 Apr;31(1):16–36. doi: 10.1016/s0022-5320(70)90142-5. [DOI] [PubMed] [Google Scholar]
- Hartmann J. F. High sodium content of cortical astrocytes. Arch Neurol. 1966 Dec;15(6):633–642. doi: 10.1001/archneur.1966.00470180073008. [DOI] [PubMed] [Google Scholar]
- Kaye G. I., Cole J. D., Donn A. Electron microscopy: sodium localization in normal and ouabain-treated transporting cells. Science. 1965 Nov 26;150(3700):1167–1168. doi: 10.1126/science.150.3700.1167. [DOI] [PubMed] [Google Scholar]
- Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kierszenbaum A. L., Libanati C. M., Tandler C. J. The distribution of inorganic cations in mouse testis. Electron microscope and microprobe analysis. J Cell Biol. 1971 Feb;48(2):314–323. doi: 10.1083/jcb.48.2.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane B. P., Martin E. Electron probe analysis of cationic species in pyroantimonate precipitates in epon-embedded tissue. J Histochem Cytochem. 1969 Feb;17(2):102–106. doi: 10.1177/17.2.102. [DOI] [PubMed] [Google Scholar]
- Latta H. The glomerular cappillary wall. J Ultrastruct Res. 1970 Sep;32(5):526–544. doi: 10.1016/s0022-5320(70)80026-0. [DOI] [PubMed] [Google Scholar]
- Legato M. J., Langer G. A. The subcellular localization of calcium ion in mammalian myocardium. J Cell Biol. 1969 May;41(2):401–423. doi: 10.1083/jcb.41.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Libanati C. M., Tandler C. J. The distribution of the water-soluble inorganic orthophosphate ions within the cell: accumulation in the nucleus. Electron probe microanalysis. J Cell Biol. 1969 Sep;42(3):754–765. doi: 10.1083/jcb.42.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolte A. Elektronenmikroskopische Untersuchungen zum Natrium- und Chloridionentransport in der proximalen Tubuluszelle der Rattenniere. Z Zellforsch Mikrosk Anat. 1966;72(4):562–573. [PubMed] [Google Scholar]
- Shiina S. I., Mizuhira V., Amakawa T., Futaesaku Y. An analysis of the histochemical procedure for sodium ion detection. J Histochem Cytochem. 1970 Sep;18(9):644–649. doi: 10.1177/18.9.644. [DOI] [PubMed] [Google Scholar]
- Siegesmund K. A. Sodium localization in the cerebellum. J Anat. 1969 Sep;105(Pt 2):403–413. [PMC free article] [PubMed] [Google Scholar]
- Spicer S. S., Hardin J. H., Greene W. B. Nuclear precipitates in pyroantimonate-osmium tetroxide-fixed tissues. J Cell Biol. 1968 Oct;39(1):216–221. doi: 10.1083/jcb.39.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tandler C. J., Libanati C. M., Sanchis C. A. The intracellular localization of inorganic cations with potassium pyroantimonate. Electron microscope and microprobe analysis. J Cell Biol. 1970 May;45(2):355–366. doi: 10.1083/jcb.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tandler C. J., Solari A. J. Nucleolar orthophosphate ions. Electron microscope and diffraction studies. J Cell Biol. 1969 Apr;41(1):91–108. doi: 10.1083/jcb.41.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tisher C. C., Cirksena W. J., Arstila A. U., Trump B. F. Subcellular localization of sodium in normal and injured proximal tubules of the rat kidney. Am J Pathol. 1969 Nov;57(2):231–251. [PMC free article] [PubMed] [Google Scholar]
- Torack R. M., LaValle M. The specificity of the pyroantimonate technique to demonstrate sodium. J Histochem Cytochem. 1970 Sep;18(9):635–643. doi: 10.1177/18.9.635. [DOI] [PubMed] [Google Scholar]
- Vinnikov Y. A., Koichev K. Sodium localization in the spiral organ during relative quiet and after exposure to sound. Nature. 1969 Aug 9;223(5206):641–642. doi: 10.1038/223641a0. [DOI] [PubMed] [Google Scholar]