Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Sep 1;50(3):682–690. doi: 10.1083/jcb.50.3.682

CONTACT-INHIBITED REVERTANT CELL LINES ISOLATED FROM SV40-TRANSFORMED CELLS

I. Biologic, Virologic, and Chemical Properties

Lloyd A Culp 1, William J Grimes 1, Paul H Black 1
PMCID: PMC2108303  PMID: 4329153

Abstract

Two contact-inhibited "revertant" cell lines were isolated from an SV40-transformed mouse 3T3 cell line (SV-3T3) after exposure to 5-fluoro-2'-deoxyuridine. Revertant cells resembled 3T3 cells morphologically and grew to saturation densities which were similar to those of 3T3 cells; however, revertant cells readily formed both single and multinucleated giant cells in confluent cultures. SV40 virus was rescued from revertant cells by fusion with permissive monkey cells. The rescued virus transformed 3T3 cells with the same efficiency as wild type virus, and produced transformed colonies which were phenotypically similar to those produced by wild type virus. The revertant cells also resembled normal 3T3 cells in that they contained higher quantities of sialic acid than SV-3T3 cells. An inverse correlation was found between the saturation density of cells and their sialic acid content. Collagen content, however, of revertant cells was similar to that of SV-3T3 cells. The data presented suggest that the property of contact inhibition in revertant cells is related to the sialic acid content of the plasma membrane and that changes in sialic acid content of transformed cells are not directly specified by the viral genome.

Full Text

The Full Text of this article is available as a PDF (764.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK P. H., CRAWFORD E. M., CRAWFORD L. V. THE PURIFICATION OF SIMIAN VIRUS 40. Virology. 1964 Nov;24:381–387. doi: 10.1016/0042-6822(64)90175-8. [DOI] [PubMed] [Google Scholar]
  2. BLACK P. H., ROWE W. P., COOPER H. L. AN ANALYSIS OF SV 40-INDUCED TRANSFORMATION OF HAMSTER KIDNEY TISSUE IN VITRO. II. STUDIES OF THREE CLONES DERIVED FROM A CONTINUOUS LINE OF TRANSFORMED CELLS. Proc Natl Acad Sci U S A. 1963 Nov;50:847–854. doi: 10.1073/pnas.50.5.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black P. H., Berman L. D., Dixon C. B. In vitro transformation by adenovirus-simiam virus 40 hybrid viruses. IV. Properties of clones isolated from cell lines transformed by adenovirus 2-simiam virus 40 and adenovirus 12-simiam virus 40 transcapsidant hybird viruses. J Virol. 1969 Nov;4(5):694–703. doi: 10.1128/jvi.4.5.694-703.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black P. H. Transformation of mouse cell line 3T3 by SV40: dose response relationship and correlation with SV40 tumor antigen production. Virology. 1966 Apr;28(4):760–763. doi: 10.1016/0042-6822(66)90262-5. [DOI] [PubMed] [Google Scholar]
  5. Bosmann H. B., Hagopian A., Eylar E. H. Cellular membranes: the isolation and characterization of the plasma and smooth membranes of HeLa cells. Arch Biochem Biophys. 1968 Oct;128(1):51–69. doi: 10.1016/0003-9861(68)90008-8. [DOI] [PubMed] [Google Scholar]
  6. Burns W. H., Black P. H. Analysis of simian virus 40-induced transformation of hamster kidney tissue in vitro. V. Variability of virus recovery from cell clones inducible with mitomycin C and cell fusion. J Virol. 1968 Jun;2(6):606–609. doi: 10.1128/jvi.2.6.606-609.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Codington J. F., Sanford B. H., Jeanloz R. W. Glycoprotein coat of the TA 3 cell. I. Removal of carbohydrate and protein material from viable cells. J Natl Cancer Inst. 1970 Oct;45(4):637–647. [PubMed] [Google Scholar]
  8. Engel E., McGee B. J., Harris H. Cytogenetic and nuclear studies on A9 and B82 cells fused together by sendai virus: the early phase. J Cell Sci. 1969 Jul;5(1):93–119. doi: 10.1242/jcs.5.1.93. [DOI] [PubMed] [Google Scholar]
  9. GOLDBERG B., GREEN H. AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES. J Cell Biol. 1964 Jul;22:227–258. doi: 10.1083/jcb.22.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green H., Goldberg B. Synthesis of collagen by mammalian cell lines of fibroblastic and nonfibroblastic origin. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1360–1365. doi: 10.1073/pnas.53.6.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grimes W. J. Sialic acid transferases and sialic acid levels in normal and transformed cells. Biochemistry. 1970 Dec 22;9(26):5083–5092. doi: 10.1021/bi00828a007. [DOI] [PubMed] [Google Scholar]
  12. Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inbar M., Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature. 1969 Aug 16;223(5207):710–712. doi: 10.1038/223710a0. [DOI] [PubMed] [Google Scholar]
  14. Kemp R. B. Effect of the removal of cell surface sialic acids on cell aggregation in vitro. Nature. 1968 Jun 29;218(5148):1255–1256. doi: 10.1038/2181255a0. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Meezan E., Wu H. C., Black P. H., Robbins P. W. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry. 1969 Jun;8(6):2518–2524. doi: 10.1021/bi00834a039. [DOI] [PubMed] [Google Scholar]
  17. Ohta N., Pardee A. B., McAuslan B. R., Burger M. M. Sialic acid contents and controls of normal and malignant cells. Biochim Biophys Acta. 1968 Apr 16;158(1):98–102. doi: 10.1016/0304-4165(68)90076-7. [DOI] [PubMed] [Google Scholar]
  18. Pollack R. E., Burger M. M. Surface-specific characteristics of a contact-inhibited cell line containing the SV40 viral genome. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1074–1076. doi: 10.1073/pnas.62.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pollack R. E., Green H., Todaro G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc Natl Acad Sci U S A. 1968 May;60(1):126–133. doi: 10.1073/pnas.60.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rabinowitz Z., Sachs L. Control of the reversion of properties in transformed cells. Nature. 1970 Jan 10;225(5228):136–139. doi: 10.1038/225136a0. [DOI] [PubMed] [Google Scholar]
  21. Rabinowitz Z., Sachs L. Reversion of properties in cells transformed by polyoma virus. Nature. 1968 Dec 21;220(5173):1203–1206. doi: 10.1038/2201203a0. [DOI] [PubMed] [Google Scholar]
  22. Strauss J. H., Jr, Burge B. W., Darnell J. E. Carbohydrate content of the membrane protein of Sindbis virus. J Mol Biol. 1970 Feb 14;47(3):437–448. doi: 10.1016/0022-2836(70)90313-x. [DOI] [PubMed] [Google Scholar]
  23. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  24. Westphal H., Dulbecco R. Viral DNA in polyoma- and SV40-transformed cell lines. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1158–1165. doi: 10.1073/pnas.59.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu H. C., Meezan E., Black P. H., Robbins P. W. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine-labeling patterns in 3T3, spontaneously transformed 3T3, and SV-40-transformed 3T3 cells. Biochemistry. 1969 Jun;8(6):2509–2517. doi: 10.1021/bi00834a038. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES