Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Sep 1;50(3):583–597. doi: 10.1083/jcb.50.3.583

A STUDY OF GLUCO-CORTICOSTEROID-INDUCED PYKNOSIS IN THE THYMUS AND LYMPH NODE OF THE ADRENALECTOMIZED RAT

Ramah W La Pushin 1, Etienne de Harven 1
PMCID: PMC2108307  PMID: 5098862

Abstract

Pyknotic nuclei, observed in the thymus of steroid-treated rats, are dense, homogeneous, intensely basophilic and Feulgen positive. Under the electron microscope, the image is that of a complete segregation of the chromatin from the nuclear sap producing a margin or crescent of condensed chromatin. Approximately 30% of all small thymocytes appeared to undergo this type of degeneration within 3–4 hr after administration of the synthetic corticosteroid, dexamethasone. At this time, pyknotic thymocytes were observed in clusters, probably as a result of the activity of dense reticular cells and macrophages. Topographical and experimental data suggest the existence of a select population of steroid-sensitive thymic cells. Furthermore, on the basis of thymidine-3H incorporation studies, it appears that the steroid-sensitive population of thymocytes does not correspond to "aged" cells. In addition, many plasma cells became pyknotic after the same steroid treatment, indicating an unexpected similarity between their nuclei and those of lymphocytes. Finally, steroid failed to induce pyknosis of thymocytes in a variety of in vitro experiments, suggesting that the in vivo effect of steroid is of an indirect nature. The results are discussed in terms of (a) the nature of the nuclear changes characterizing pyknosis, (b) the hypothetical mechanism whereby steroids trigger such changes, and (c) the population of cells susceptible to steroid-induced pyknosis.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGLUND K. Studies on factors which condition the effect of cortisone on antibody production. I. The significance of time of hormone administration in primary hemolysin response. Acta Pathol Microbiol Scand. 1956;38(4):311–328. doi: 10.1111/j.1699-0463.1956.tb01707.x. [DOI] [PubMed] [Google Scholar]
  2. CAFFREY R. W., RIEKE W. O., EVERETT N. B. Radioautographic studies of small lymphocytes in the thoracic duct of the rat. Acta Haematol. 1962;28:145–154. doi: 10.1159/000207257. [DOI] [PubMed] [Google Scholar]
  3. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COONS A. H., LEDUC E. H., CONNOLLY J. M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955 Jul 1;102(1):49–60. doi: 10.1084/jem.102.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COWAN W. K., SORENSON G. D. ELECTRON MICROSCOPIC OBSERVATIONS OF ACUTE THYMIC INVOLUTION PRODUCED BY HYDROCORTISONE. Lab Invest. 1964 Apr;13:353–370. [PubMed] [Google Scholar]
  6. CRADDOCK C. G., NAKAI G. S., FUKUTA H., VANSLAGER L. M. PROLIFERATIVE ACTIVITY OF THE LYMPHATIC TISSUES OF RATS AS STUDIED WITH TRITIUM-LABELED THYMIDINE. J Exp Med. 1964 Sep 1;120:389–412. doi: 10.1084/jem.120.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craddock C. G. Kinetics of lymphoreticular tissue, with particular emphasis on the lymphatic system. Semin Hematol. 1967 Oct;4(4):387–414. [PubMed] [Google Scholar]
  8. DOUGHERTY T. F., BERLINER M. L., SCHNEEBELI G. L., BERLINER D. L. HORMONAL CONTROL OF LYMPHATIC STRUCTURE AND FUNCTION. Ann N Y Acad Sci. 1964 Feb 28;113:825–843. doi: 10.1111/j.1749-6632.1964.tb40707.x. [DOI] [PubMed] [Google Scholar]
  9. DOUGHERTY T. F. Effect of hormones on lympatic tissue. Physiol Rev. 1952 Oct;32(4):379–401. doi: 10.1152/physrev.1952.32.4.379. [DOI] [PubMed] [Google Scholar]
  10. Esteban J. N. The differential effect of hydrocortisone on the short-lived small lymphocyte. Anat Rec. 1968 Nov;162(3):349–356. doi: 10.1002/ar.1091620309. [DOI] [PubMed] [Google Scholar]
  11. Everett N. B., Tyler R. W. Lymphopoiesis in the thymus and other tissues: functional implications. Int Rev Cytol. 1967;22:205–237. doi: 10.1016/s0074-7696(08)61836-7. [DOI] [PubMed] [Google Scholar]
  12. FLIEDNER T., KESSE M., CRONKITE E. P., ROBERTSON J. S. CELL PROLIFERATION IN GERMINAL CENTERS OF THE RAT SPLEEN. Ann N Y Acad Sci. 1964 Feb 28;113:578–594. doi: 10.1111/j.1749-6632.1964.tb40692.x. [DOI] [PubMed] [Google Scholar]
  13. HAY E. D., REVEL J. P. The fine structure of the DNP component of the nucleus. An electron microscopic study utilizing autoradiography to localize DNA synthesis. J Cell Biol. 1963 Jan;16:29–51. doi: 10.1083/jcb.16.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HILL M. Re-utilization of lymphocyte remnants by reticular cells. Nature. 1959 Apr 11;183(4667):1059–1060. doi: 10.1038/1831059a0. [DOI] [PubMed] [Google Scholar]
  15. HITCHINGS G. H., ELION G. B. Chemical suppression of the immune response. Pharmacol Rev. 1963 Jun;15:365–405. [PubMed] [Google Scholar]
  16. Law L. W. Studies of thymic function with emphasis on the role of the thymus in oncogenesis. Cancer Res. 1966 Apr;26(4):551–574. [PubMed] [Google Scholar]
  17. Lundin M., Schelin U. The effect of steroids on the histology and ultrastructure of lymphoid tissue.I. Acute thymic involution. Pathol Eur. 1966;1(1):15–28. [PubMed] [Google Scholar]
  18. Miller J. J., 3rd, Cole L. J. Resistance of long-lived lymphocytes and plasma cells in rat lymph nodes to treatment with prednisone, cyclophosphamide, 6-mercaptopurine, and actinomycin D. J Exp Med. 1967 Jul 1;126(1):109–125. doi: 10.1084/jem.126.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Milner G. R. Nuclear morphology and the ultrastructural localization of deoxyribonucleic acid synthesis during interphase. J Cell Sci. 1969 May;4(3):569–582. doi: 10.1242/jcs.4.3.569. [DOI] [PubMed] [Google Scholar]
  20. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  22. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES