Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Sep 1;50(3):652–668. doi: 10.1083/jcb.50.3.652

PRIMITIVE ERYTHROPOIESIS IN EARLY CHICK EMBRYOGENESIS

I. Cell Cycle Kinetics and the Control of Cell Division

Harold Weintraub 1, Graham Le M Campbell 1, Howard Holtzer 1
PMCID: PMC2108311  PMID: 5098864

Abstract

The primitive line of embryonic chick blood cells develop as a relatively homogeneous cohort of cells. Using an analysis based on the continuous uptake of thymidine-3H, we have established the generation time, G1, S, and G2 for progressively more mature generations of these immature erythroblasts. The data indicate that after the initiation of hemoglobin synthesis, the average cell will yield six generations of hemoglobin producing erythroblasts. The older generations of erythroblasts exhibit a longer generation time, G1, S, and G2 than the earlier generations of erythroblasts. Other methods of analysis corroborated these findings. One of these methods, an estimate of total erythrocyte productivity from the primitive stem cells (hematocytoblasts), led to the conclusion that the erythroblast cell lineage might be initiated as early as the sixth or seventh division following fertilization. In addition, primitive erythroblasts characterized by one set of cell cycle parameters, when grown in serum associated with erythroblasts of different parameters, showed no alteration in mitotic behavior. These results suggest the presence of programmed cell division not immediately cued by extracellular influence.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L. The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp Cell Res. 1969 Jul;56(1):55–58. doi: 10.1016/0014-4827(69)90393-0. [DOI] [PubMed] [Google Scholar]
  2. Bischoff R., Holtzer H. Mitosis and the processes of differentiation of myogenic cells in vitro. J Cell Biol. 1969 Apr;41(1):188–200. doi: 10.1083/jcb.41.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolund L., Ringertz N. R., Harris H. Changes in the cytochemical properties of erythrocyte nuclei reactivated by cell fusion. J Cell Sci. 1969 Jan;4(1):71–87. doi: 10.1242/jcs.4.1.71. [DOI] [PubMed] [Google Scholar]
  4. Campbell G. le M., Weintraub H., Mayall B. H., Holtzer H. Primitive erythropoiesis in early chick embryogenesis. II. Correlation between hemoglobin synthesis and the mitotic history. J Cell Biol. 1971 Sep;50(3):669–681. doi: 10.1083/jcb.50.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chacko S., Abbott J., Holtzer S., Holtzer H. The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De la Chapelle A., Fantoni A., Marks P. A. Differentiation of mammalian somatic cells: DNA and hemoglobin synthesis in fetal mouse yolk sac erythroid cells. Proc Natl Acad Sci U S A. 1969 Jul;63(3):812–819. doi: 10.1073/pnas.63.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emanuelsson H. Cell multiplication in the chick blastoderm up to the time of laying. Exp Cell Res. 1965 Sep;39(2):386–399. doi: 10.1016/0014-4827(65)90042-x. [DOI] [PubMed] [Google Scholar]
  8. GRASSO J. A., WOODARD J. W., SWIFT H. Cytochemical studies of nucleic acids and proteins in erythrocytic development. Proc Natl Acad Sci U S A. 1963 Jul;50:134–140. doi: 10.1073/pnas.50.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grasso J. A., Woodard J. W. DNA synthesis and mitosis in erythropoietic cells. J Cell Biol. 1967 Jun;33(3):645–655. doi: 10.1083/jcb.33.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HELL A. THE INITIAL SYNTHESIS OF HAEMOGLOBIN IN DE-EMBRYONATED CHICK BLASTODERMS. I. METABOLISM OF THE BLASTODISC CULTURED IN VITRO. J Embryol Exp Morphol. 1964 Dec;12:609–619. [PubMed] [Google Scholar]
  11. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobson M. Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central conections. Dev Biol. 1968 Feb;17(2):219–232. doi: 10.1016/0012-1606(68)90062-6. [DOI] [PubMed] [Google Scholar]
  13. Johnson T. C., Holland J. J. Ribonucleic acid and protein synthesis in mitotic HeLa cells. J Cell Biol. 1965 Dec;27(3):565–574. doi: 10.1083/jcb.27.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kovach J. S., Marks P. A., Russell E. S., Epler H. Erythroid cell development in fetal mice: ultrastructural characteristics and hemoglobin synthesis. J Mol Biol. 1967 Apr 14;25(1):131–142. doi: 10.1016/0022-2836(67)90284-7. [DOI] [PubMed] [Google Scholar]
  15. Levere R. D., Granick S. Control of hemoglobin synthesis in the cultured chick blastoderm. J Biol Chem. 1967 Apr 25;242(8):1903–1911. [PubMed] [Google Scholar]
  16. Mak S. Mammalian cell cycle analysis using microspectrophotometry combined with autoradiography. Exp Cell Res. 1965 Aug;39(1):286–289. doi: 10.1016/0014-4827(65)90030-3. [DOI] [PubMed] [Google Scholar]
  17. Manasek F. J. Mitosis in developing cardiac muscle. J Cell Biol. 1968 Apr;37(1):191–196. doi: 10.1083/jcb.37.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manasek F. J. Myocardial cell death in the embryonic chick ventricle. J Embryol Exp Morphol. 1969 Apr;21(2):271–284. [PubMed] [Google Scholar]
  19. O'BRIEN B. R. Development of haemoglobin by de-embryonated chick blastoderms cultured in vitro and the effect of abnormal RNA upon its synthesis. J Embryol Exp Morphol. 1961 Mar;9:202–221. [PubMed] [Google Scholar]
  20. Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
  21. PRESCOTT D. M., BENDER M. A. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp Cell Res. 1962 Mar;26:260–268. doi: 10.1016/0014-4827(62)90176-3. [DOI] [PubMed] [Google Scholar]
  22. PUCK T. T., STEFFEN J. LIFE CYCLE ANALYSIS OF MAMMALIAN CELLS. I. A METHOD FOR LOCALIZING METABOLIC EVENTS WITHIN THE LIFE CYCLE, AND ITS APPLICATION TO THE ACTION OF COLCEMIDE AND SUBLETHAL DOSES OF X-IRRADIATION. Biophys J. 1963 Sep;3:379–397. doi: 10.1016/s0006-3495(63)86828-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rumyantsev P. P. Autoradiographic study on the synthesis of DNA, RNA, and proteins in normal cardiac muscle cells and those changed by experimental injury. Folia Histochem Cytochem (Krakow) 1966;4(4):397–424. [PubMed] [Google Scholar]
  24. STANNERS C. P., TILL J. E. DNA synthesis in individual L-strain mouse cells. Biochim Biophys Acta. 1960 Jan 29;37:406–419. doi: 10.1016/0006-3002(60)90496-0. [DOI] [PubMed] [Google Scholar]
  25. Sasaki R., Morishita T., Yamagata S. Mitosis of heart muscle cells in normal rats. Tohoku J Exp Med. 1968 Dec;96(4):405–411. doi: 10.1620/tjem.96.405. [DOI] [PubMed] [Google Scholar]
  26. Scharff M. D., Robbins E. Polyribosome disaggregation during metaphase. Science. 1966 Feb 25;151(3713):992–995. doi: 10.1126/science.151.3713.992. [DOI] [PubMed] [Google Scholar]
  27. Tarbutt R. G. A study of erythropoiesis in the rat. Exp Cell Res. 1967 Nov;48(2):473–483. doi: 10.1016/0014-4827(67)90370-9. [DOI] [PubMed] [Google Scholar]
  28. Thorell B., Raunich L. Microspectrophotometric observations on erythrocyte development in the chick embryo. Ann Med Exp Biol Fenn. 1966;44(2):131–133. [PubMed] [Google Scholar]
  29. WARNER J. R., RICH A. THE NUMBER OF GROWING POLYPEPTIDE CHAINS ON RETICULOCYTE POLYRIBOSOMES. J Mol Biol. 1964 Nov;10:202–211. doi: 10.1016/s0022-2836(64)80041-3. [DOI] [PubMed] [Google Scholar]
  30. WESSELLS N. K. DNA SYNTHESIS, MITOSIS, AND DIFFERENTIATION IN PANCREATIC ACINAR CELLS IN VITRO. J Cell Biol. 1964 Mar;20:415–433. doi: 10.1083/jcb.20.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WILT F. H. REGULATION OF THE INITIATION OF CHICK EMBRYO HEMOGLOBIN SYNTHESIS. J Mol Biol. 1965 Jun;12:331–341. doi: 10.1016/s0022-2836(65)80257-1. [DOI] [PubMed] [Google Scholar]
  32. Watanabe I., Okada S. Effects of temperature on growth rate of cultured mammalian cells (L5178Y). J Cell Biol. 1967 Feb;32(2):309–323. doi: 10.1083/jcb.32.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weinstein R. B., Hay E. D. Deoxyribonucleic acid synthesis and mitosis in differentiated cardiac muscle cells of chick embryos. J Cell Biol. 1970 Oct;47(1):310–316. doi: 10.1083/jcb.47.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES