Abstract
Epidermal repair during wound healing is under investigation at both the light and electron microscopic levels. Suction-induced subepidermal blisters have been employed to produce two complementary model wound healing systems. These two model systems are: (a) intact subepidermal blisters, and (b) opened subepidermal blisters (the blister roof was removed immediately after induction, leaving an open wound). From these studies a pattern of movement for epidermal cells in wound healing is proposed. This pattern of movement is the same for both model systems. Epidermal cells appear to move by rolling or sliding over one another. Fine fibers oriented in the cortical cytoplasm may play an important role in the movement of these epidermal cells. Also instrumental in mediating this movement are intercellular junctions (desmosomes) and a firm attachment to a substrate through hemidesmosomes. In the intact subepidermal blisters hemidesmosomal attachment is made to a continuous and homogeneous substrate, the retained basal lamina. In the opened subepidermal blisters contact of epidermal cells is made to a discontinuous substrate composed of sporadic areas of fibrin and underlying mesenchymal cells.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABERCROMBIE M., HEAYSMAN J. E. Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res. 1954 May;6(2):293–306. doi: 10.1016/0014-4827(54)90176-7. [DOI] [PubMed] [Google Scholar]
- Baker P. C., Schroeder T. E. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev Biol. 1967 May;15(5):432–450. doi: 10.1016/0012-1606(67)90036-x. [DOI] [PubMed] [Google Scholar]
- Brody I. An electron-microscopic study of the junctional and regular desmosomes in normal human epidermia. Acta Derm Venereol. 1968;48(4):290–302. [PubMed] [Google Scholar]
- Croft C. B., Tarin D. Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. J Anat. 1970 Jan;106(Pt 1):63–77. [PMC free article] [PubMed] [Google Scholar]
- Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbins J. R. Migration of stratified squamous epithelium in vivo. The development of phagocytic ability. Am J Pathol. 1968 Dec;53(6):929–951. [PMC free article] [PubMed] [Google Scholar]
- Goldman R. D., Follett E. A. The structure of the major cell processes of isolated BHK21 fibroblasts. Exp Cell Res. 1969 Oct;57(2):263–276. doi: 10.1016/0014-4827(69)90150-5. [DOI] [PubMed] [Google Scholar]
- Jahn T. L., Bovee E. C. Protoplasmic movements within cells. Physiol Rev. 1969 Oct;49(4):793–862. doi: 10.1152/physrev.1969.49.4.793. [DOI] [PubMed] [Google Scholar]
- Kelly D. E. Fine structure of desmosomes. , hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966 Jan;28(1):51–72. doi: 10.1083/jcb.28.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiistala U., Mustakallio K. K. Dermo-epidermal separation with suction. Electron microscopic and histochemical study of initial events of blistering on human skin. J Invest Dermatol. 1967 May;48(5):466–477. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ODLAND G. F. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):529–538. [PMC free article] [PubMed] [Google Scholar]
- Odland G., Ross R. Human wound repair. I. Epidermal regeneration. J Cell Biol. 1968 Oct;39(1):135–151. doi: 10.1083/jcb.39.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palade G. E., Farquhar M. G. A special fibril of the dermis. J Cell Biol. 1965 Oct;27(1):215–224. doi: 10.1083/jcb.27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHEUING M. R., SINGER M. The effects of microquantitles of beryllium ion on the regenerating forelimb of the adult newt, Triturus. J Exp Zool. 1957 Nov;136(2):301–327. doi: 10.1002/jez.1401360207. [DOI] [PubMed] [Google Scholar]
- Spooner B. S., Wessells N. K. Effects of cytochalasin B upon microfilaments involved in morphogenesis of salivary epithelium. Proc Natl Acad Sci U S A. 1970 Jun;66(2):360–361. doi: 10.1073/pnas.66.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughan R. B., Trinkaus J. P. Movements of epithelial cell sheets in vitro. J Cell Sci. 1966 Dec;1(4):407–413. doi: 10.1242/jcs.1.4.407. [DOI] [PubMed] [Google Scholar]
- Wohlfarth-Bottermann K. E. Cell structures and their significance for ameboid movement. Int Rev Cytol. 1964;16:61–131. doi: 10.1016/s0074-7696(08)60294-6. [DOI] [PubMed] [Google Scholar]
- Wrenn J. T., Wessells N. K. An ultrastructural study of lens invagination in the mouse. J Exp Zool. 1969 Jul;171(3):359–367. doi: 10.1002/jez.1401710310. [DOI] [PubMed] [Google Scholar]