Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 May 1;49(2):264–287. doi: 10.1083/jcb.49.2.264

DIFFERENTIATION OF ENDOPLASMIC RETICULUM IN HEPATOCYTES

I. Glucose-6-Phosphatase Distribution In Situ

A Leskes 1, P Siekevitz 1, G E Palade 1
PMCID: PMC2108341  PMID: 19866758

Abstract

The distribution of glucose-6-phosphatase activity in rat hepatocytes during a period of rapid endoplasmic reticulum differentiation (4 days before birth-1 day after birth) was studied by electron microscope cytochemistry. Techniques were devised to insure adequate morphological preservation, retain glucose-6-phosphatase activity, and control some other possible artifacts. At all stages examined the lead phosphate deposited by the cytochemical reaction is localized to the endoplasmic reticulum and the nuclear envelope. At 4 days before birth, when the enzyme specific activity is only a few per cent of the adult level, the lead deposit is present in only a few hepatocytes. In these cells a light deposit is seen throughout the entire rough-surfaced endoplasmic reticulum. At birth, when the specific activity of glucose-6-phosphatase is approximately equal to that of the adult, nearly all cells show a positive reaction for the enzyme and, again, the deposit is evenly distributed throughout the entire endoplasmic reticulum. By 24 hr postparturition all of the rough endoplasmic reticulum, and in addition the newly formed smooth endoplasmic reticulum, contains heavy lead deposits; enzyme activity at this stage is 250% of the adult level. These findings indicate that glucose-6-phosphatase develops simultaneously within all of the rough endoplasmic reticulum membranes of a given cell, although asynchronously in the hepatocyte population as a whole. In addition, the enzyme appears throughout the entire smooth endoplasmic reticulum as the membranes form during the first 24 hr after birth. The results suggest a lack of differentiation within the endoplasmic reticulum with respect to the distribution of glucose-6-phosphatase at the present level of resolution.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Anderson P. J. Purification and quantitation of glutaraldehyde and its effect on several enzyme activities in skeletal muscle. J Histochem Cytochem. 1967 Aug;15(11):652–661. doi: 10.1177/15.11.652. [DOI] [PubMed] [Google Scholar]
  3. BURCH H. B., LOWRY O. H., KUHLMAN A. M., SKERJANCE J., DIAMANT E. J., LOWRY S. R., VON DIPPE P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J Biol Chem. 1963 Jul;238:2267–2273. [PubMed] [Google Scholar]
  4. CHIQUOINE A. D. The distribution of glucose-6-phosphatase in the liver and kidney of the mouse. J Histochem Cytochem. 1953 Nov;1(6):429–435. doi: 10.1177/1.6.429. [DOI] [PubMed] [Google Scholar]
  5. DAWKINS M. J. GLYCOGEN SYNTHESIS AND BREAKDOWN IN FETAL AND NEWBORN RAT LIVER. Ann N Y Acad Sci. 1963 Dec 30;111:203–211. doi: 10.1111/j.1749-6632.1963.tb36960.x. [DOI] [PubMed] [Google Scholar]
  6. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duttera S. M., Byrne W. L., Ganoza M. C. Studies on the phospholipid requirement of glucose 6-phosphatase. J Biol Chem. 1968 May 10;243(9):2216–2228. [PubMed] [Google Scholar]
  9. ESSNER E., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol. 1958 Nov 25;4(6):711–716. doi: 10.1083/jcb.4.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ericsson J. L. On the fine structural demonstration of glucose 6-phosphatase. J Histochem Cytochem. 1966 Apr;14(4):361–362. doi: 10.1177/14.4.361. [DOI] [PubMed] [Google Scholar]
  11. Farkas W. R. Depolymerization of ribonucleic acid by plumbous ion. Biochim Biophys Acta. 1968 Feb 26;155(2):401–409. doi: 10.1016/0005-2787(68)90184-6. [DOI] [PubMed] [Google Scholar]
  12. Greengard O., Dewey H. K. Initiation by glucagon of the premature development of tyrosine aminotransferase, serine dehydratase, and glucose-6-phosphatase in fetal rat liver. J Biol Chem. 1967 Jun 25;242(12):2986–2991. [PubMed] [Google Scholar]
  13. Greengard O., Dewey H. K. The developmental formation of liver glucose 6-phosphatase and reduced nicotinamide adenine dinucleotide phosphate dehydrogenase in fetal rats treated with thyroxine. J Biol Chem. 1968 May 25;243(10):2745–2749. [PubMed] [Google Scholar]
  14. Greengard O. Enzymic differentiation in mammalian liver injection of fetal rats with hormones causes the premature formation of liver enzymes. Science. 1969 Feb 28;163(3870):891–895. doi: 10.1126/science.163.3870.891. [DOI] [PubMed] [Google Scholar]
  15. HERS H. G., BERTHET J., BERTHET L., DE DUVE C. Le système hexose-phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol (Paris) 1951;33(1-2):21–41. [PubMed] [Google Scholar]
  16. HULTIN T. Characteristics of extracts from liver microsomes. Exp Cell Res. 1957 Apr;12(2):290–298. doi: 10.1016/0014-4827(57)90142-8. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Manns E. Preservation of glucose 6-phosphatase activity in formaldehyde-fixed fresh frozen sections. J Histochem Cytochem. 1968 Dec;16(12):819–822. doi: 10.1177/16.12.819. [DOI] [PubMed] [Google Scholar]
  20. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moses H. L., Rosenthal A. S., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J Histochem Cytochem. 1966 Oct;14(10):702–710. doi: 10.1177/14.10.702. [DOI] [PubMed] [Google Scholar]
  22. Moses H. L., Rosenthal A. S. On the significance of lead-catalyzed hydrolysis of nucleoside phosphates in histochemical systems. J Histochem Cytochem. 1967 Jun;15(6):354–355. doi: 10.1177/15.6.354. [DOI] [PubMed] [Google Scholar]
  23. PALADE G. E. The endoplasmic reticulum. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):85–98. doi: 10.1083/jcb.2.4.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosenthal A. S., Moses H. L., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J Histochem Cytochem. 1966 Oct;14(10):698–701. doi: 10.1177/14.10.698. [DOI] [PubMed] [Google Scholar]
  25. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. STETTEN M. R., TAFT H. L. METABOLISM OF INORGANIC PYROPHOSPHATE. II. THE PROBABLE IDENTITY OF MICROSOMAL INORGANIC PYROPHOSPHATASE, PYROPHOSPHATE PHOSPHOTRANSFERASE, AND GLUCOSE 6-PHOSPHATASE. J Biol Chem. 1964 Dec;239:4041–4046. [PubMed] [Google Scholar]
  27. SWANSON M. A. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950 Jun;184(2):647–659. [PubMed] [Google Scholar]
  28. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES