Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 May 1;49(2):362–371. doi: 10.1083/jcb.49.2.362

AN ELECTRON MICROSCOPIC STUDY OF THE DEVELOPMENT OF SYNAPSES IN CULTURED FETAL MOUSE CEREBRUM CONTINUOUSLY EXPOSED TO XYLOCAINE

Pat G Model 1, Murray B Bornstein 1, Stanley M Crain 1, George D Pappas 1
PMCID: PMC2108344  PMID: 19866764

Abstract

Explants of fetal mouse cerebral cortex, continuously exposed to the local anesthetic Xylocaine from the time of explantation to the time of fixation, were examined in the electron microscope to determine whether morphologically normal synapses and potentially functional interneuronal synaptic networks can form in the absence of electrical impulse activity. Morphological differentiation of complex synaptic networks proceeds normally, and the drug does not alter the fine structure of the formed synapses. These observations are consonant with the electrophysiological data which show that the potential for complex bioelectric activity can develop in the absence of its expression. The development and maturation of functional synaptic networks, then, is not contingent upon prior electrical impulse activity. These data support the concept that organized neuronal assemblies are formed in forward reference to their ultimate function.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bunge M. B., Bunge R. P., Peterson E. R. The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 1967 Dec;6(4):728–749. doi: 10.1016/0006-8993(67)90129-1. [DOI] [PubMed] [Google Scholar]
  2. CRAIN S. M., BORNSTEIN M. B. BIOELECTRIC ACTIVITY OF NEONATAL MOUSE CEREBRAL CORTEX DURING GROWTH AND DIFFERENTIATION IN TISSUE CULTURE. Exp Neurol. 1964 Nov;10:425–450. doi: 10.1016/0014-4886(64)90034-2. [DOI] [PubMed] [Google Scholar]
  3. CRAIN S. M., PETERSON E. R. COMPLEX BIOELECTRIC ACTIVITY IN ORGANIZED TISSUE CULTURES OF SPINAL CORD (HUMAN, RAT AND CHICK). J Cell Physiol. 1964 Aug;64:1–13. doi: 10.1002/jcp.1030640102. [DOI] [PubMed] [Google Scholar]
  4. CRAIN S. M. Resting and action potentials of cultured chick embryo spinal ganglion cells. J Comp Neurol. 1956 Apr;104(2):285–329. doi: 10.1002/cne.901040207. [DOI] [PubMed] [Google Scholar]
  5. Caley D. W., Maxwell D. S. Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol. 1970 Jan;138(1):31–47. doi: 10.1002/cne.901380104. [DOI] [PubMed] [Google Scholar]
  6. Crain S. M., Bornstein M. B., Peterson E. R. Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectric activity. Brain Res. 1968 May;8(2):363–372. doi: 10.1016/0006-8993(68)90055-3. [DOI] [PubMed] [Google Scholar]
  7. Crain S. M. Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol. 1966;9:1–43. doi: 10.1016/s0074-7742(08)60135-x. [DOI] [PubMed] [Google Scholar]
  8. Crain S. M., Peterson E. R. Onset and development of functional interneuronal connections in explants of rat spinal cord-ganglia during maturation in culture. Brain Res. 1967 Dec;6(4):750–762. doi: 10.1016/0006-8993(67)90130-8. [DOI] [PubMed] [Google Scholar]
  9. Del Cerro M. P., Snider R. S., Oster M. Evolution of the extracellular space in immature nervous tissue. Experientia. 1968 Sep 15;24(9):929–930. doi: 10.1007/BF02138661. [DOI] [PubMed] [Google Scholar]
  10. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  11. Gray E. G., Guillery R. W. Synaptic morphology in the normal and degenerating nervous system. Int Rev Cytol. 1966;19:111–182. doi: 10.1016/s0074-7696(08)60566-5. [DOI] [PubMed] [Google Scholar]
  12. Jacobson M. Development of neuronal specificity in retinal ganglion cells of Xenopus. Dev Biol. 1968 Feb;17(2):202–218. doi: 10.1016/0012-1606(68)90061-4. [DOI] [PubMed] [Google Scholar]
  13. Meller K., Breipohl W., Glees P. Synaptic organization of the molecular and the outer granular layer in the motor cortex in the white mouse during postnatal development. A Golgi- and electronmicroscopical study. Z Zellforsch Mikrosk Anat. 1968;92(2):217–231. doi: 10.1007/BF00335649. [DOI] [PubMed] [Google Scholar]
  14. PALAY S. L. Synapses in the central nervous system. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):193–202. doi: 10.1083/jcb.2.4.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PALAY S. L. The morphology of synapses in the central nervous system. Exp Cell Res. 1958;14(Suppl 5):275–293. [PubMed] [Google Scholar]
  16. Pysh J. J. The development of the extracellular space in neonatal rat inferior colliculus: an electron microscopic study. Am J Anat. 1969 Apr;124(4):411–429. doi: 10.1002/aja.1001240402. [DOI] [PubMed] [Google Scholar]
  17. Ross L. L., Bornstein M. B. An electron microscopic study of synaptic alterations in cultured mammalian central nervous tissues exposed to serum from animals with experimental allergic encephalomyelitis. Lab Invest. 1969 Jan;20(1):26–35. [PubMed] [Google Scholar]
  18. SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Siegesmund K. A., Sances A., Jr, Larson S. J. Effects of electroanesthesia on synaptic ultrastructure. J Neurol Sci. 1969 Jul-Aug;9(1):89–96. doi: 10.1016/0022-510x(69)90061-6. [DOI] [PubMed] [Google Scholar]
  20. VOELLER K., PAPPAS G. D., PURPURA D. P. Electron microscope study of development of cat superficial neocortex. Exp Neurol. 1963 Feb;7:107–130. doi: 10.1016/s0014-4886(63)80003-5. [DOI] [PubMed] [Google Scholar]
  21. Williams V., Grossman R. G. Ultrastructure of cortical synapses after failure of presynaptic activity in ischemia. Anat Rec. 1970 Feb;166(2):131–141. doi: 10.1002/ar.1091660202. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES