Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Sep 1;38(3):483–493. doi: 10.1083/jcb.38.3.483

RESPIRATION AND MITOCHONDRIAL CONTENT IN SINGLE NEURONS OF THE SUPRAOPTIC NUCLEUS

A Correlative Study in Osmotic Stress

Sverker Eneström 1, Anders Hamberger 1
PMCID: PMC2108370  PMID: 4874493

Abstract

The study was undertaken to investigate the possible correlation of total volume of mitochondria per cell with the rate of succinate oxidation in isolated nerve cell bodies, after various functional stresses in the experimental animals. Significant cytological effects were found in the nerve cells of the supraoptic nucleus in rats which had been thirsting for 4–12 days or had been given 2% sodium chloride solution as a substitute for drinking water for a few weeks. Quantitation of mitochondria was done from electron micrographs. The cell volumes were calculated from sections of Epon-embedded tissue under phase-contrast microscopy. Succinate oxidation was measured on groups of 10 nerve cells with the microdiver technique. As a result of either thirst or sodium chloride load, the volume of mitochondria per nerve cell more than doubled. The rate of succinate oxidation was not changed after the rats had been thirsting but was enhanced by over 100% after they had drunk sodium chloride. A linear relationship was found for the amount of mitochondria versus respiration in the supraoptic neurons for all experimental groups except the thirsting animals. The mitochondria in the supraoptic neurons from thirsting animals were of the same size or smaller than those in controls, whereas in animals given sodium chloride solution the mitochondria were considerably enlarged. The observed effects were specific for the supraoptic nucleus.

Full Text

The Full Text of this article is available as a PDF (838.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACHRACH D. Uber einige Probleme deŕ hypothalamischen Neurosekretion. I. Beiträge zur Herkunft des Neurosekrets. Z Zellforsch Mikrosk Anat. 1957;46(4):457–473. [PubMed] [Google Scholar]
  2. BELLAIRS R. The development of the nervous system in chick embryos, studied by electron microscopy. J Embryol Exp Morphol. 1959 Mar;7(1):94–115. [PubMed] [Google Scholar]
  3. BRAUN G. A., MARSH J. B., DRABKIN D. L. AMINO ACID INCORPORATION INTO PROTEIN BY LIVER MITOCHONDRIA FROM NEPHROTIC AND PARTIALLY HEPATECTOMIZED RATS. Biochim Biophys Acta. 1963 Aug 20;72:645–647. [PubMed] [Google Scholar]
  4. DE GROOT J. Neurosecretion in experimental conditions. Anat Rec. 1957 Feb;127(2):201–217. doi: 10.1002/ar.1091270207. [DOI] [PubMed] [Google Scholar]
  5. EDSTROEM J. E., EICHNER D. [Qualitative and quantitative ribonucleic acid studies on the cells of the ganglia of the supraoptic and paraventricular nerves of the rat in normal and experimental conditions (sodium chloride loading)]. Anat Anz. 1960 Dec 27;108:312–319. [PubMed] [Google Scholar]
  6. EDSTROM J. E., EICHNER D. Quantitative Ribonukleinsäure-Untersuchungen an den Ganglienzellen des Nucleus supraopticus der Albino-Ratte unter experimentellen Bedingungen (Kochsalz-Belastung). Z Zellforsch Mikrosk Anat. 1958;48(2):187–200. [PubMed] [Google Scholar]
  7. EICHNER D. Topochemische Untersuchungen am neurosekretorischen Zwisch enhirn-Hypophysensystem der Albino-Ratte unter normalen und experimentellen Bedingungen. Z Zellforsch Mikrosk Anat. 1958;48(4):402–428. [PubMed] [Google Scholar]
  8. EICHNER D. Uber den morphologischen Ausdruck funktioneller Beziehungen zwischen Nebennierenrinde und neurosekretorischem Zwischenhirnsystem der Ratte. Z Zellforsch Mikrosk Anat. 1953;38(5):488–508. [PubMed] [Google Scholar]
  9. Epstein M. H., O'Connor J. S. Enzyme changes in isolated retinal layers in light and darkness. J Neurochem. 1966 Oct;13(10):907–911. doi: 10.1111/j.1471-4159.1966.tb10286.x. [DOI] [PubMed] [Google Scholar]
  10. GABLER G. [On changes in structure and shape of the mitochondria. III> The chondriome of the cell with increased function]. Z Gesamte Exp Med. 1961;134:475–492. [PubMed] [Google Scholar]
  11. Gustafsson R., Tata J. R., Lindberg O., Ernster L. The relationship between the structure and activity of rat skeletal muscle mitochondria after thyroidectomy and thyroid hormone treatment. J Cell Biol. 1965 Aug;26(2):555–578. doi: 10.1083/jcb.26.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HARTMANN J. F. Electron microscopy of motor nerve cells following section of axones. Anat Rec. 1954 Jan;118(1):19–33. doi: 10.1002/ar.1091180103. [DOI] [PubMed] [Google Scholar]
  13. HILD W., ZETLER G. Experimenteller Beweis für die Entstehung der sog. Hypophysenhinterlappenwirkstoffe im Hypothalamus. Pflugers Arch. 1953;257(3):169–201. doi: 10.1007/BF00370079. [DOI] [PubMed] [Google Scholar]
  14. HUDSON G., LAZAROW A., HARTMANN J. F. A quantitative electron microscopic study of mitochondria in motor neurones following axonal section. Exp Cell Res. 1961 Sep;24:440–456. doi: 10.1016/0014-4827(61)90445-1. [DOI] [PubMed] [Google Scholar]
  15. IFFT J. D., MCNARY W. F., Jr, SIMONEIT L. SUCCINIC DEHYDROGENASE AND RNA IN THE SUPRAOPTIC NUCLEUS AND HYPOTHALAMIC ANTERIOR AREA IN DEHYDRATED RATS. Proc Soc Exp Biol Med. 1964 Oct;117:170–171. doi: 10.3181/00379727-117-29526. [DOI] [PubMed] [Google Scholar]
  16. Iijima K., Shantha T. R., Bourne G. H. Enzyme-histochemical studies on the hypothalamus with specil reference to the supraoptic and paraventricular nuclei of squirrel monkey (Saimiri sciureus). Z Zellforsch Mikrosk Anat. 1967;79(1):76–91. doi: 10.1007/BF00335245. [DOI] [PubMed] [Google Scholar]
  17. KIVALO E., RINNE U. K., MAKELA S. Acetylcholinesterase, acid phosphatase, and succinic dehydrogenase in the hypothalamic magnocellular nuclei after chlorpromazine administration; histochemical studies. Experientia. 1958 Aug 15;14(8):293–294. doi: 10.1007/BF02167007. [DOI] [PubMed] [Google Scholar]
  18. LEVEQUE T. F. Changes in the neurosecretory cells of the rat hypothalamus following ingestion of sodium chloride. Anat Rec. 1953 Dec;117(4):741–757. doi: 10.1002/ar.1091170406. [DOI] [PubMed] [Google Scholar]
  19. LUCK D. J. Genesis of mitochondria in neurospora crassa. Proc Natl Acad Sci U S A. 1963 Feb 15;49:233–240. doi: 10.1073/pnas.49.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laguens R. P., Lozada B. B., Gómez Dumm C. L., Beramendi A. R. Effect of acute and exhaustive exercise upon the fine structure of heart mitochondria. Experientia. 1966 Apr 15;22(4):244–246. doi: 10.1007/BF01900936. [DOI] [PubMed] [Google Scholar]
  22. Lee K. L., Miller O. N. Induction of mitochondrial alpha-glycerophosphate dehydrogenase by thyroid hormone: effect of fasting and refeeding. Proc Soc Exp Biol Med. 1966 Dec;123(3):679–683. doi: 10.3181/00379727-123-31575. [DOI] [PubMed] [Google Scholar]
  23. MILLER R. A. The relation of mitochondria to secretory activity in the fascicular zone of the rat's adrenal. Am J Anat. 1953 Mar;92(2):329–359. doi: 10.1002/aja.1000920206. [DOI] [PubMed] [Google Scholar]
  24. Nafstad P. H., Blackstad T. W. Distribution of mitochondria in pyramidal cells and boutons in hippocampal cortex. Z Zellforsch Mikrosk Anat. 1966;73(2):234–245. doi: 10.1007/BF00334866. [DOI] [PubMed] [Google Scholar]
  25. Nemetschek-Gansler H. Zur Ultrastruktur des Hypophysen-Zwischenhirnsystems der Ratte. Z Zellforsch Mikrosk Anat. 1965 Sep 17;67(6):844–862. [PubMed] [Google Scholar]
  26. ORTMANN R. Morphologisch-experimentelle Untersuchungen über das diencephalhypophysäre System im Verhältnis zum Wasserhaushalt. Klin Wochenschr. 1950 Jul 1;28(25-26):449–449. doi: 10.1007/BF01485534. [DOI] [PubMed] [Google Scholar]
  27. ORTMANN R. Ueber experimentelle Veränderungen der Morphologie des Hypophysenzwischenhirnsystems und die Beziehung der sogenannten Gomorisubstanz zum Adiuretin. Z Zellforsch Mikrosk Anat. 1951;36(1):92–140. [PubMed] [Google Scholar]
  28. PEPLER W. J., PEARSE A. G. The histochemistry of the esterases of rat brain, with special reference to those of the hypothalamic nuclei. J Neurochem. 1957;1(3):193–202. doi: 10.1111/j.1471-4159.1957.tb12072.x. [DOI] [PubMed] [Google Scholar]
  29. RAIHA N. Effect of ethanol on cytological changes induced by salt load in nucleus supraopticus of rat. Proc Soc Exp Biol Med. 1960 Feb;103:387–389. doi: 10.3181/00379727-103-25530. [DOI] [PubMed] [Google Scholar]
  30. ROODYN D. B., FREEMAN K. B., TATA J. R. THE STIMULATION BY TREATMENT IN VIVO WITH TRI-IODOTHYRONINE OF AMINO ACID INCORPORATION INTO PROTEIN BY ISOLATED RAT-LIVER MITOCHONDRIA. Biochem J. 1965 Mar;94:628–641. doi: 10.1042/bj0940628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SLOPER J. C., KING B. C. Activity and degeneration in secretory neurones of the hypothalamus and posterior pituitary of the rat. J Pathol Bacteriol. 1963 Jul;86:179–197. [PubMed] [Google Scholar]
  32. Zambrano D., De Robertis E. The secretory cycle of supraoptic neurons in the rat: a structural-functional correlation. Z Zellforsch Mikrosk Anat. 1966;73(3):414–431. doi: 10.1007/BF00329020. [DOI] [PubMed] [Google Scholar]
  33. Zenker N., Hanker J. S., Morizono Y., Deb C., Seligman A. M. Carcinogens 3,4-benzpyrene and 3-methylcholanthrene: induction of mitochondrial oxidative enzymes. Science. 1968 Mar 8;159(3819):1102–1103. doi: 10.1126/science.159.3819.1102. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES