Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1970 Oct 1;47(1):159–182. doi: 10.1083/jcb.47.1.159

NEW OBSERVATIONS ON FLAGELLAR FINE STRUCTURE

The Relationship Between Matrix Structure and the Microtubule Component of the Axoneme

Fred D Warner 1
PMCID: PMC2108401  PMID: 4935335

Abstract

The sperm flagella of the blowfly Sarcophaga bullata demonstrate the relationship of radial projections in the matrix region to the microtubule organization of the axoneme. The A microtubule of each peripheral doublet is connected to the central sheath by a series of paired radial links. The links lie along the tubule wall with a alternate spacing of about 320/560 A. The distal end of each link is enlarged into a globular head that connects via a transitional link to the helical sheath around the central microtubules. The radial link pairs are disposed in the form of a double helix with a pitch of about 1760 A. It is proposed that a similar organization is common to all cilia and flagella showing ninefold symmetry and must provide, in part, the morphological basis for motility.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. doi: 10.1083/jcb.5.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDRE J. [On some newly discovered details of the ultrastructure of the vibratile organites]. J Ultrastruct Res. 1961 Mar;5:86–108. doi: 10.1016/s0022-5320(61)80007-5. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson W. A., Personne P. The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. J Cell Biol. 1970 Jan;44(1):29–51. doi: 10.1083/jcb.44.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
  6. Brokaw C. J. Mechanisms of sperm movement. Symp Soc Exp Biol. 1968;22:101–116. [PubMed] [Google Scholar]
  7. Chasey D. Observations on the central pair of microtubules from the cilia of Tetrahymena pyriformis. J Cell Sci. 1969 Sep;5(2):453–458. doi: 10.1242/jcs.5.2.453. [DOI] [PubMed] [Google Scholar]
  8. Friend D. S. The fine structure of Giardia muris. J Cell Biol. 1966 May;29(2):317–332. doi: 10.1083/jcb.29.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
  11. Grimstone A. V., Klug A. Observations on the substructure of flagellar fibres. J Cell Sci. 1966 Sep;1(3):351–362. doi: 10.1242/jcs.1.3.351. [DOI] [PubMed] [Google Scholar]
  12. Henley C., Costello D. P., Thomas M. B., Newton W. D. The "9+1" pattern of microtubules in spermatozoa of Mesostoma (Platyhelminthes, Turbellaria). Proc Natl Acad Sci U S A. 1969 Nov;64(3):849–856. doi: 10.1073/pnas.64.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kessel R. G. An electron microscope study of spermiogenesis in the grasshopper with particular reference to the development of microtubular systems during differentiation. J Ultrastruct Res. 1967 Jun;18(5):677–694. doi: 10.1016/s0022-5320(67)80213-2. [DOI] [PubMed] [Google Scholar]
  14. Phillips D. M. Exceptions to the prevailing pattern of tubules (9 + 9 + 2) in the sperm flagella of certain insect species. J Cell Biol. 1969 Jan;40(1):28–43. doi: 10.1083/jcb.40.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phillips D. M. Fine structure of Sciara coprophila sperm. J Cell Biol. 1966 Sep;30(3):499–517. doi: 10.1083/jcb.30.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reedy M. K. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol. 1968 Jan 28;31(2):155–176. doi: 10.1016/0022-2836(68)90437-3. [DOI] [PubMed] [Google Scholar]
  17. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ross J., Robison W. G., Jr Unusual microtubular patterns and three-dimensional movement of mealybug sperm and sperm bundles. J Cell Biol. 1969 Feb;40(2):426–445. doi: 10.1083/jcb.40.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Satir P. Morphological aspects of ciliary motility. J Gen Physiol. 1967 Jul;50(6 Suppl):241–258. doi: 10.1085/jgp.50.6.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Satir P. STUDIES ON CILIA : II. Examination of the Distal Region of the Ciliary Shaft and the Role of the Filaments in Motility. J Cell Biol. 1965 Sep 1;26(3):805–834. doi: 10.1083/jcb.26.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Silveira M. Ultrastructural studies on a "nine plus one" flagellum 1. J Ultrastruct Res. 1969 Feb;26(3):274–288. doi: 10.1016/s0022-5320(69)80007-9. [DOI] [PubMed] [Google Scholar]
  22. Sleigh M. A. Patterns of ciliary beating. Symp Soc Exp Biol. 1968;22:131–150. [PubMed] [Google Scholar]
  23. Williams N. E., Luft J. H. Use of a nitrogen mustard derivative in fixation for electron microscopy and observations on the ultrastructure of Tetrahymena. J Ultrastruct Res. 1968 Nov;25(3):271–292. doi: 10.1016/s0022-5320(68)80074-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES