Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jul 1;50(1):10–34. doi: 10.1083/jcb.50.1.10

THE FORMATION OF BASAL BODIES (CENTRIOLES) IN THE RHESUS MONKEY OVIDUCT

Richard G W Anderson 1, Robert M Brenner 1
PMCID: PMC2108422  PMID: 4998200

Abstract

Basal body replication during estrogen-driven ciliogenesis in the rhesus monkey (Macaca mulatta) oviduct has been studied by stereomicroscopy, rotation photography, and serial section analysis. Two pathways for basal body production are described: acentriolar basal body formation (major pathway) where procentrioles are generated from a spherical aggregate of fibers; and centriolar basal body formation, where procentrioles are generated by the diplosomal centrioles. In both pathways, the first step in procentriole formation is the arrangement of a fibrous granule precursor into an annulus. A cartwheel structure, present within the lumen of the annulus, is composed of a central cylinder with a core, spoke components, and anchor filaments. Tubule formation consists of an initiation and a growth phase. The A tubule of each triplet set first forms within the wall material of the annulus in juxtaposition to a spoke of the cartwheel. After all nine A tubules are initiated, B and C tubules begin to form. The initiation of all three tubules occurs sequentially around the procentriole. Simultaneous with tubule initiation is a nonsequential growth of each tubule. The tubules lengthen and the procentriole is complete when it is about 200 mµ long. The procentriole increases in length and diameter during its maturation into a basal body. The addition of a basal foot, nine alar sheets, and a rootlet completes the maturation process. Fibrous granules are also closely associated with the formation of these basal body accessory structures.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BESSIS M., BRETON-GORIUS J. Sur une structure inframicroscopique péricentriolaire; étude au microscope électronique sur des leucocytes de mammifères. C R Hebd Seances Acad Sci. 1958 Feb 24;246(8):1289–1291. [PubMed] [Google Scholar]
  3. BESSIS M., BRETON-GORIUS J., THIERY J. P. Centriole, corps de Golgi et aster des leucocytes; étude au microscope électronique. Rev Hematol. 1958 Jul-Sep;13(3):363–386. [PubMed] [Google Scholar]
  4. Brenner R. M. Renewal of oviduct cilia during the menstrual cycle of the rhesus monkey. Fertil Steril. 1969 Jul-Aug;20(4):599–611. doi: 10.1016/s0015-0282(16)37086-8. [DOI] [PubMed] [Google Scholar]
  5. Dingle A. D., Fulton C. Development of the flagellar apparatus of Naegleria. J Cell Biol. 1966 Oct;31(1):43–54. doi: 10.1083/jcb.31.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GALL J. G. Centriole replication. A study of spermatogenesis in the snail Viviparus. J Biophys Biochem Cytol. 1961 Jun;10:163–193. doi: 10.1083/jcb.10.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoage T. R., Kessel R. G. An electron microscope study of the process of differentiation during spermatogenesis in the drone honey bee (Apis mellifera L.) with special reference to centriole replication and elimination. J Ultrastruct Res. 1968 Jul;24(1):6–32. doi: 10.1016/s0022-5320(68)80014-0. [DOI] [PubMed] [Google Scholar]
  10. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kalnins V. I., Porter K. R. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch Mikrosk Anat. 1969;100(1):1–30. doi: 10.1007/BF00343818. [DOI] [PubMed] [Google Scholar]
  12. Murray R. G., Murray A. S., Pizzo A. The fine structure of mitosis in rat thymic lymphocytes. J Cell Biol. 1965 Aug;26(2):601–619. doi: 10.1083/jcb.26.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Outka D. E., Kluss B. C. The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis. J Cell Biol. 1967 Nov;35(2):323–346. doi: 10.1083/jcb.35.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips D. M. Giant centriole formation in Sciara. J Cell Biol. 1967 Apr;33(1):73–92. doi: 10.1083/jcb.33.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RENAUD F. L., SWIFT H. THE DEVELOPMENT OF BASAL BODIES AND FLAGELLA IN ALLOMYCES ARBUSCULUS. J Cell Biol. 1964 Nov;23:339–354. doi: 10.1083/jcb.23.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robbins E., Jentzsch G., Micali A. The centriole cycle in synchronized HeLa cells. J Cell Biol. 1968 Feb;36(2):329–339. doi: 10.1083/jcb.36.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
  18. Sorokin S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968 Jun;3(2):207–230. doi: 10.1242/jcs.3.2.207. [DOI] [PubMed] [Google Scholar]
  19. Stockinger L., Cireli E. Eine bisher unbekannte Art der Zentriolenvermehrung. Z Zellforsch Mikrosk Anat. 1965 Dec 10;68(5):733–740. [PubMed] [Google Scholar]
  20. Turner F. R. An ultrastructural study of plant spermatogenesis. Spermatogenesis in Nitella. J Cell Biol. 1968 May;37(2):370–393. doi: 10.1083/jcb.37.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES