Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jun 1;49(3):747–772. doi: 10.1083/jcb.49.3.747

"NEW MEMBRANE" FORMATION IN AMOEBA PROTEUS UPON INJURY OF INDIVIDUAL CELLS

Electron Microscope Observations

Barbara Szubinska 1
PMCID: PMC2108478  PMID: 4103955

Abstract

Changes in the plasma membrane complex following the injury of single cells of Amoeba proteus were examined with the electron microscope. Two types of injury were employed in this study; cells were either pinched ("cut") in half or speared with a glass microneedle, and quickly fixed. Speared cells, when fixed in the presence of the ruthenium violet (a derivative of ruthenium red), revealed the presence of an extra trilaminar structure outside of each cell. This structure, called the "new membrane," was separated from the plasma membrane complex by a distance of less than a micron. The trilaminar structure of the new membrane strikingly resembled the image of the plasma membrane in all cells examined, except for its increased width (30%). This new membrane appeared nearly to surround the injured amebae. Attempts were made to demonstrate the possible origin of the new membrane, its reality, and its sensitivity to calcium. Also, some evidence is shown concerning the role of the small dense droplets (100–1200 A in diameter) normally present in the cytoplasm of amebae. Their frequent contact with the plasma membrane of the cell as the result of injury is interpreted as indicating their involvement in the formation and expansion of the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRANDT P. W., PAPPAS G. D. An electron microscopic study of pinocytosis in ameba. II. The cytoplasmic uptake phase. J Cell Biol. 1962 Oct;15:55–71. doi: 10.1083/jcb.15.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beament J. W. The insect cuticle and membrane structure. Br Med Bull. 1968 May;24(2):130–134. doi: 10.1093/oxfordjournals.bmb.a070614. [DOI] [PubMed] [Google Scholar]
  3. Bhowmick D. K., Wohlfarth-Bottermann K. E. An improved method for fixing amoebae for electron microscopy. Exp Cell Res. 1965 Nov;40(2):252–263. doi: 10.1016/0014-4827(65)90258-2. [DOI] [PubMed] [Google Scholar]
  4. Bingley M. S. Further investigations into membrane potentials in Amoebae. Exp Cell Res. 1966 Aug;43(1):1–12. doi: 10.1016/0014-4827(66)90371-5. [DOI] [PubMed] [Google Scholar]
  5. Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol. 1969 Jun;41(3):786–805. doi: 10.1083/jcb.41.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandt P. W., Freeman A. R. Plasma membrane: substructural changes correlated with electrical resistance and pinocytosis. Science. 1967 Feb 3;155(3762):582–585. doi: 10.1126/science.155.3762.582. [DOI] [PubMed] [Google Scholar]
  7. Bruce D. L., Marshall J. M., Jr Some ionic and bioelectric properties of the ameba Chaos chaos. J Gen Physiol. 1965 Sep;49(1):151–178. doi: 10.1085/jgp.49.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COHEN A. I. Electron microscopic observations of amoeba proteus in growth and inanition. J Biophys Biochem Cytol. 1957 Nov 25;3(6):859–866. doi: 10.1083/jcb.3.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flickinger C. J. The effects of enucleation on the cytoplasmic membranes of Amoeba proteus. J Cell Biol. 1968 May;37(2):300–315. doi: 10.1083/jcb.37.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Griffin J. L., Stein M. N., Stowell R. E. Laser microscope irradiation of Physarum polycephalum: dynamic and ultrastructural effects. J Cell Biol. 1969 Jan;40(1):108–119. doi: 10.1083/jcb.40.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luft J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966 Nov-Dec;25(6):1773–1783. [PubMed] [Google Scholar]
  12. MERCER E. H. An electron microscopic study of Amoeba proteus. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):216–232. doi: 10.1098/rspb.1959.0016. [DOI] [PubMed] [Google Scholar]
  13. MORRILL G. A., KABACK H. R., ROBBINS E. EFFECT OF CALCIUM ON INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS IN PLANT AND ANIMAL CELLS. Nature. 1964 Nov 14;204:641–642. doi: 10.1038/204641a0. [DOI] [PubMed] [Google Scholar]
  14. Nachmias V. T. Further electron microscope studies on fibrillar organization of the ground cytoplasm of Chaos chaos. J Cell Biol. 1968 Jul;38(1):40–50. doi: 10.1083/jcb.38.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'NEILL C. H. ISOLATION AND PROPERTIES OF THE CELL SURFACE MEMBRANE OF AMOEBA PROTEUS. Exp Cell Res. 1964 Sep;35:477–496. doi: 10.1016/0014-4827(64)90137-5. [DOI] [PubMed] [Google Scholar]
  16. PRESCOTT D. M. Mass and clone culturing of Amoeba proteus and Chaos chaos. C R Trav Lab Carlsberg Chim. 1956;30(1):1–12. [PubMed] [Google Scholar]
  17. Petrik P., Riedel B. An osmiophilic bilaminar lining film at the respiratory surfaces of avian lungs. Z Zellforsch Mikrosk Anat. 1968;88(2):204–219. doi: 10.1007/BF00703908. [DOI] [PubMed] [Google Scholar]
  18. Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROTH L. E., OBETZ S. W., DANIELS E. W. Electron microscopic studies of mitosis in amebae. I. Amoeba proteus. J Biophys Biochem Cytol. 1960 Sep;8:207–220. doi: 10.1083/jcb.8.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES