Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jun 1;49(3):722–730. doi: 10.1083/jcb.49.3.722

STUDIES OF MEMBRANE FORMATION IN TETRAHYMENA PYRIFORMIS

III. Lipid Incorporation into Various Cellular Membranes of Logarithmic Phase Cultures

Yoshinori Nozawa 1, Guy A Thompson Jr 1
PMCID: PMC2108485  PMID: 5092209

Abstract

When 1-14C-palmitic acid is used to pulse label logarithmic cultures of Tetrahymena pyriformis, radioactivity appears in lipids of the various membrane types at vastly differing rates. The microsomes and postmicrosomal supernatant attain a high specific radioactivity within 1 min, while the membranes enveloping the cilia require several hours to reach the microsomal level. A similar pattern is obtained when the tracer is sodium 1-14C-acetate or 8,9-3H-hexadecyl glycerol. In all fractions the phosphonolipid incorporates radioactivity from 14C-palmitate much less rapidly than do the other major phospholipids. The patterns of labeling suggest that new lipids are transported from a cytoplasmic site of synthesis to points of membrane fabrication throughout the cell.

Full Text

The Full Text of this article is available as a PDF (560.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama M., Sakagami T. Exchange of mitochondrial lecithin and cephalin with those in rat liver microsomes. Biochim Biophys Acta. 1969 Jul 29;187(1):105–112. [PubMed] [Google Scholar]
  2. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elliott A. M., Clemmons G. L. An ultrastructural study of ingestion and digestion in Tetrahymena pyriformis. J Protozool. 1966 May;13(2):311–323. doi: 10.1111/j.1550-7408.1966.tb01912.x. [DOI] [PubMed] [Google Scholar]
  4. HAMBURGER K., ZEUTHEN E. Synchronous divisions in Tetrahymena pyriformis as studied in an inorganic medium; the effect of 2,4-dinitrophenol. Exp Cell Res. 1957 Dec;13(3):443–453. doi: 10.1016/0014-4827(57)90074-5. [DOI] [PubMed] [Google Scholar]
  5. Jungalwala F. B., Dawson R. M. Phospholipid synthesis and exchange in isolated liver cells. Biochem J. 1970 Apr;117(3):481–490. doi: 10.1042/bj1170481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kahane I., Razin S. Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. Biochim Biophys Acta. 1969 Jun 3;183(1):79–89. doi: 10.1016/0005-2736(69)90131-x. [DOI] [PubMed] [Google Scholar]
  7. Mandel P., Nussbaum J. L. Incorporation of 32P into the phosphatides of myelin sheaths and of intracellular membranes. J Neurochem. 1966 Aug;13(8):629–642. doi: 10.1111/j.1471-4159.1966.tb09871.x. [DOI] [PubMed] [Google Scholar]
  8. McMurray W. C., Dawson R. M. Phospholipid exchange reactions within the liver cell. Biochem J. 1969 Mar;112(1):91–108. doi: 10.1042/bj1120091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mindich L. Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. J Mol Biol. 1970 Apr 28;49(2):433–439. doi: 10.1016/0022-2836(70)90255-x. [DOI] [PubMed] [Google Scholar]
  10. Nozawa Y., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. II. Isolation and lipid analysis of cell fractions. J Cell Biol. 1971 Jun;49(3):712–721. doi: 10.1083/jcb.49.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  12. THOMPSON G. A., Jr THE BIOSYNTHESIS OF ETHER-CONTAINING PHOSPHOLIPIDS IN THE SLUG, ARION ATER. I. INCORPORATION STUDIES IN VIVO. J Biol Chem. 1965 May;240:1912–1918. [PubMed] [Google Scholar]
  13. Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. I. Rates of phospholipid biosynthesis. Biochemistry. 1967 Jul;6(7):2015–2022. doi: 10.1021/bi00859a020. [DOI] [PubMed] [Google Scholar]
  14. Thompson G. A., Jr The metabolism of 2-aminoethylphosphonate lipids in Tetrahymena pyriformis. Biochim Biophys Acta. 1969 Mar 4;176(2):330–338. doi: 10.1016/0005-2760(69)90191-x. [DOI] [PubMed] [Google Scholar]
  15. Tsao S. S., Cornatzer W. E. Biosynthesis of phospholipids in subcellular particles from cultured cells of human tissue. Lipids. 1967 Sep;2(5):424–428. doi: 10.1007/BF02531858. [DOI] [PubMed] [Google Scholar]
  16. Warren L. The biological significance of turnover of the surface membrane of animal cells. Curr Top Dev Biol. 1969;4:197–222. doi: 10.1016/s0070-2153(08)60485-8. [DOI] [PubMed] [Google Scholar]
  17. Wirtz K. W., Zilversmit D. B. Exchange of phospholipids between liver mitochondria and microsomes in vitro. J Biol Chem. 1968 Jul 10;243(13):3596–3602. [PubMed] [Google Scholar]
  18. Wirtz K. W., Zilversmit D. B. Participation of soluble liver proteins in the exchange of membrane phospholipids. Biochim Biophys Acta. 1969 Oct 14;193(1):105–116. doi: 10.1016/0005-2736(69)90063-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES