Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1971 Jun 1;49(3):883–898. doi: 10.1083/jcb.49.3.883

COMPARATIVE STUDIES OF LIGHT MEROMYOSIN PARACRYSTALS DERIVED FROM RED, WHITE, AND CARDIAC MUSCLE MYOSINS

A Nakamura 1, F Sreter 1, J Gergely 1
PMCID: PMC2108508  PMID: 4103957

Abstract

Tryptic and chymotryptic light meromyosin paracrystals from red and cardiac muscles of rabbit show a negative and positive staining pattern with uranyl acetate and phosphotungstate that sharply differs from that of white muscle light meromyosin paracrystals. The main periodicity of about 430 A is the same regardless of the source of light meromyosin. The results are discussed in terms of the molecular structure and the functional properties of various myosins.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARANY M., BARANY K., RECKARD T., VOLPE A. MYOSIN OF FAST AND SLOW MUSCLES OF THE RABBIT. Arch Biochem Biophys. 1965 Jan;109:185–191. doi: 10.1016/0003-9861(65)90304-8. [DOI] [PubMed] [Google Scholar]
  2. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen C., Lowey S., Harrison R. G., Kendrick-Jones J., Szent-Gyorgyi A. G. Segments from myosin rods. J Mol Biol. 1970 Feb 14;47(3):605–609. doi: 10.1016/0022-2836(70)90329-3. [DOI] [PubMed] [Google Scholar]
  4. GERGELY J., GOUVEA M. A., KARIBIAN D. Fragmentation of myosin by chymotrypsin. J Biol Chem. 1955 Jan;212(1):165–177. [PubMed] [Google Scholar]
  5. HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
  6. Johnson P., Lobley G. E., Perry S. V. Distribution and biological role of 3-methyl-histidine in actin and myosin. Biochem J. 1969 Sep;114(2):34P–34P. doi: 10.1042/bj1140034pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King M. V., Young M. Selective non-enzymic cleavage of the myosin rod. Electron-microscopic studies on crystals and paracrystals of light meromyosin-C. J Mol Biol. 1970 Jun 14;50(2):491–507. doi: 10.1016/0022-2836(70)90207-x. [DOI] [PubMed] [Google Scholar]
  8. Kuehl W. M., Adelstein R. S. Identification of epsilon-N-monomethyllysine and epsilon-N-trimethyllysine in rabbit skeletal myosin. Biochem Biophys Res Commun. 1969 Sep 24;37(1):59–65. doi: 10.1016/0006-291x(69)90880-8. [DOI] [PubMed] [Google Scholar]
  9. Locker R. H., Hagyard C. J. Small subunits in myosin. Arch Biochem Biophys. 1967 May;120(2):454–461. doi: 10.1016/0003-9861(67)90264-0. [DOI] [PubMed] [Google Scholar]
  10. Lowey S., Goldstein L., Cohen C., Luck S. M. Proteolytic degradation of myosin and the meromyosins by a water-insoluble polyanionic derivative of trypsin: properties of a helical subunit isolated from heavy meromyosin. J Mol Biol. 1967 Feb 14;23(3):287–304. doi: 10.1016/s0022-2836(67)80106-2. [DOI] [PubMed] [Google Scholar]
  11. Mommaerts W. F., Buller A. J., Seraydarian K. The modification of some biochemical properties of muscle by cross-innervation. Proc Natl Acad Sci U S A. 1969 Sep;64(1):128–133. doi: 10.1073/pnas.64.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nauss K. M., Kitagawa S., Gergely J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. Implications for the substructure of myosin. J Biol Chem. 1969 Feb 25;244(4):755–765. [PubMed] [Google Scholar]
  13. PHILPOTT D. E., SZENT-GYORGYI A. G. The structure of light-meromyosin: an electron microscopic study. Biochim Biophys Acta. 1954 Oct;15(2):165–173. doi: 10.1016/0006-3002(54)90056-6. [DOI] [PubMed] [Google Scholar]
  14. Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
  15. Podlubnaya Z. A., Kalamkarova M. B., Nankina V. P. Polymorphism of the light meromyosin crystallization. J Mol Biol. 1969 Dec 28;46(3):591–592. doi: 10.1016/0022-2836(69)90199-5. [DOI] [PubMed] [Google Scholar]
  16. Samaha F. J., Guth L., Albers R. W. Differences between slow and fast muscle myosin. Adenosine triphosphatase activity and release of associated proteins by p-chloromercuriphenylsulfonate. J Biol Chem. 1970 Jan 25;245(2):219–224. [PubMed] [Google Scholar]
  17. Seidel J. C. Studies on myosin from red and white skeletal muscles of the rabbit. II. Inactivation of myosin from red muscles under mild alkaline conditions. J Biol Chem. 1967 Dec 10;242(23):5623–5629. [PubMed] [Google Scholar]
  18. Sreter F. A., Seidel J. C., Gergely J. Studies on myosin from red and white skeletal muscles of the rabbit. I. Adenosine triphosphatase activity. J Biol Chem. 1966 Dec 25;241(24):5772–5776. [PubMed] [Google Scholar]
  19. WEBER A. The ultracentrifugal separation of L-myosin and actin in an actomyosin sol under the influence of ATP. Biochim Biophys Acta. 1956 Feb;19(2):345–351. doi: 10.1016/0006-3002(56)90439-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES