Abstract
Slow cooling of fertilized chicken eggs permits the elongation and termination of nascent polypeptides in the polysomes but prevents the initiation of new protein chains. This leads to polysome disaggregation during the first 30 min of cooling, and to the formation, of a pool of inactive ribosomes prone to crystallization. After 2 hr these ribosomes began to form tetramers, which do not contain any labeled proteins synthesized during cooling. If protein synthesis is inhibited by cycloheximide, added to eggs before cooling, tetramer formation in the embryos is prevented. Puromycin, on the other hand, leads to polysome disassembly and does not prevent tetramer formation. Rapid cooling of explanted embryos after short incubation at 37°C, with or without cycloheximide, largely prevents polysome disaggregation and the formation of tetramers. On the other hand, the addition of puromycin to explanted embryos promotes tetramer formation after rapid cooling. When cooled eggs are rewarmed, tetramers are disassembled into monomers, even if protein synthesis is inhibited. When those embryos were rapidly recooled tetramers reformed spontaneously from tetramer-derived monomers, even in the presence of cycloheximide. We conclude that the formation of tetramers at low temperature is an inherent property of the normal ribosomes.
Full Text
The Full Text of this article is available as a PDF (719.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baliga B. S., Pronczuk A. W., Munro H. N. Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. J Biol Chem. 1969 Aug 25;244(16):4480–4489. [PubMed] [Google Scholar]
- COLOMBO B., FELICETTI L., BAGLIONI C. INHIBITION OF PROTEIN SYNTHESIS BY CYCLOHEXIMIDE IN RABBIT RETICULOCYTES. Biochem Biophys Res Commun. 1965 Feb 3;18:389–395. doi: 10.1016/0006-291x(65)90719-9. [DOI] [PubMed] [Google Scholar]
- Das H. K., Goldstein A. Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. J Mol Biol. 1968 Jan 28;31(2):209–226. doi: 10.1016/0022-2836(68)90440-3. [DOI] [PubMed] [Google Scholar]
- Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Friedman H., Lu P., Rich A. Ribosomal subunits produced by cold sensitive initiation of protein synthesis. Nature. 1969 Aug 30;223(5209):909–913. doi: 10.1038/223909a0. [DOI] [PubMed] [Google Scholar]
- Lin S. Y., Mosteller R. D., Hardesty B. The mechanism of sodium fluoride and cycloheximide inhibition of hemoglobin biosynthesis in the cell-free reticulocyte system. J Mol Biol. 1966 Oct 28;21(1):51–69. doi: 10.1016/0022-2836(66)90079-9. [DOI] [PubMed] [Google Scholar]
- Morimoto T., Blobel G., Sabatini D. D. Ribosome crystallization in chicken embryos. I. Isolation, characterization, and in vitro activity of ribosome tetramers. J Cell Biol. 1972 Feb;52(2):338–354. doi: 10.1083/jcb.52.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips L. A., Hotham-Iglewski B., Franklin R. M. Polyribosomes of Escherichia coli. II. Experiments to determine the in vivo distribution of polysomes, ribosomes and ribosomal subunits. J Mol Biol. 1969 Oct 14;45(1):23–38. doi: 10.1016/0022-2836(69)90207-1. [DOI] [PubMed] [Google Scholar]
- Sutter R. P., Moldave K. The interaction of aminoacyl transferase II and ribosomes. J Biol Chem. 1966 Apr 25;241(8):1698–1704. [PubMed] [Google Scholar]
