Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Feb 1;52(2):231–245. doi: 10.1083/jcb.52.2.231

THE SECRETORY PATHWAYS OF RAT SERUM GLYCOPROTEINS AND ALBUMIN

Localization of Newly Formed Proteins within the Endoplasmic Reticulum

Colvin M Redman 1, M George Cherian 1
PMCID: PMC2108637  PMID: 5057975

Abstract

These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.

Full Text

The Full Text of this article is available as a PDF (1,022.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOAS N. F. Method for the determination of hexosamines in tissues. J Biol Chem. 1953 Oct;204(2):553–563. [PubMed] [Google Scholar]
  2. CAMPBELL P. N., GREENGARD O., KERNOT B. A. Studies on the synthesis o serum albumin by the isolated microsome fraction from rat liver. Biochem J. 1960 Jan;74:107–117. doi: 10.1042/bj0740107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caccam J. F., Jackson J. J., Eylar E. H. The biosynthesis of mannose-containing glycoproteins: a possible lipid intermediate. Biochem Biophys Res Commun. 1969 May 22;35(4):505–511. doi: 10.1016/0006-291x(69)90375-1. [DOI] [PubMed] [Google Scholar]
  4. Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glaumann H., Ericsson J. L. Evidence for the participation of the Golgi apparatus in the intracellular transport of nascent albumin in the liver cell. J Cell Biol. 1970 Dec;47(3):555–567. doi: 10.1083/jcb.47.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glaumann H. Studies on the synthesis and transport of albumin in microsomal subfractions from rat liver. Biochim Biophys Acta. 1970 Nov 12;224(1):206–218. doi: 10.1016/0005-2787(70)90634-9. [DOI] [PubMed] [Google Scholar]
  8. Glaumann H., von der Decken A., Dallner G. The heterogeneous composition of the smooth microsomal membranes in rat liver. Life Sci. 1968 Sep 1;7(17):905–911. doi: 10.1016/0024-3205(68)90095-7. [DOI] [PubMed] [Google Scholar]
  9. Hallinan T., Murty C. N., Grant J. H. Early labeling with glucosamine-C14 of granular and agranular endoplasmic reticulum and free ribosomes from rat liver. Arch Biochem Biophys. 1968 Jun;125(3):715–720. doi: 10.1016/0003-9861(68)90505-5. [DOI] [PubMed] [Google Scholar]
  10. Hicks S. J., Drysdale J. W., Munro H. N. Preferential synthesis of ferritin and albumin by different populations of liver polysomes. Science. 1969 May 2;164(3879):584–585. doi: 10.1126/science.164.3879.584. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lawford G. R., Schachter H. Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J Biol Chem. 1966 Nov 25;241(22):5408–5418. [PubMed] [Google Scholar]
  13. MOLNAR J., ROBINSON G. B., WINZLER R. J. BIOSYNTHESIS OF GLYCOPROTEINS. IV. THE SUBCELLULAR SITES OF INCORPORATION OF GLUCOSAMINE-1-14-C INTO GLYCOPROTEIN RAT LIVER. J Biol Chem. 1965 May;240:1882–1888. [PubMed] [Google Scholar]
  14. Molnar J., Sy D. Attachment of glucosamine to protein at the ribosomal site of rat liver. Biochemistry. 1967 Jul;6(7):1941–1947. doi: 10.1021/bi00859a009. [DOI] [PubMed] [Google Scholar]
  15. Molnar J., Tetas M., Chao H. Subcellular site of glycoprotein synthesis in liver. Biochem Biophys Res Commun. 1969 Nov 6;37(4):684–690. doi: 10.1016/0006-291x(69)90865-1. [DOI] [PubMed] [Google Scholar]
  16. Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PETERS T., Jr The biosynthesis of rat serum albumin. II. Intracellular phenomena in the secretion of newly formed albumin. J Biol Chem. 1962 Apr;237:1186–1189. [PubMed] [Google Scholar]
  19. Peters T., Jr, Fleischer B., Fleischer S. The biosynthesis of rat serum albumin. IV. Apparent passage of albumin through the Golgi apparatus during secretion. J Biol Chem. 1971 Jan 10;246(1):240–244. [PubMed] [Google Scholar]
  20. Priestley G. C., Pruyn M. L., Malt R. A. Glycoprotein synthesis by membraneound ribosomes and smooth membranes in kidney. Biochim Biophys Acta. 1969 Sep 17;190(1):154–160. doi: 10.1016/0005-2787(69)90164-6. [DOI] [PubMed] [Google Scholar]
  21. Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
  22. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Redman C. M. Studies on the transfer of incomplete polypeptide chains across rat liver microsomal membranes in vitro. J Biol Chem. 1967 Feb 25;242(4):761–768. [PubMed] [Google Scholar]
  24. Redman C. M. The synthesis of serum proteins on attached rather than free ribosomes of rat liver. Biochem Biophys Res Commun. 1968 Jun 28;31(6):845–850. doi: 10.1016/0006-291x(68)90528-7. [DOI] [PubMed] [Google Scholar]
  25. Robinson G. B. The role of polyribosomes in the biosynthesis of glycoprotein. Biochem J. 1969 Dec;115(5):1077–1078. doi: 10.1042/bj1151077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  27. Sherr C. J., Uhr J. W. Immunoglobulin synthesis and secretion. V. Incorporation of leucine and glucosamine into immunoglobulin on free and bound polyribosomes. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1183–1189. doi: 10.1073/pnas.66.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simkin J. L., Sikorska E. J., Jamieson J. C., Sargent A. A. Biosynthesis of glycoproteins by a cell-free microsome system from guinea pig liver. Biochim Biophys Acta. 1968 Dec 23;170(2):422–425. doi: 10.1016/0304-4165(68)90022-6. [DOI] [PubMed] [Google Scholar]
  29. Spiro R. G. Glycoproteins: their biochemistry, biology and role in human disease (first of two parts). N Engl J Med. 1969 Oct 30;281(18):991–contd. doi: 10.1056/NEJM196910302811806. [DOI] [PubMed] [Google Scholar]
  30. Spiro R. G., Spiro M. J. Glycoprotein biosynthesis: studies on thyroglobulin. Characterization of a particulate precursor and radioisotope incorporation by thyroid slices and particle systems. J Biol Chem. 1966 Mar 25;241(6):1271–1282. [PubMed] [Google Scholar]
  31. Takagi M., Tanaka T., Ogata K. Functional differences in protein synthesis between free and bound polysomes of rat liver. Biochim Biophys Acta. 1970 Sep 17;217(1):148–158. doi: 10.1016/0005-2787(70)90131-0. [DOI] [PubMed] [Google Scholar]
  32. Tetas M., Chao H., Molnar J. Incorporation of carbohydrates into endogenous acceptors of liver microsomal fractions. Arch Biochem Biophys. 1970 May;138(1):135–146. doi: 10.1016/0003-9861(70)90292-4. [DOI] [PubMed] [Google Scholar]
  33. Wagner R. R., Cynkin M. A. Enzymatic transfer of 14C-glucosamine from UDP-N-acetyl-14C-glucosamine to endogenous acceptors in a Golgi apparatus-rich fraction from liver. Biochem Biophys Res Commun. 1969 Apr 10;35(1):139–143. doi: 10.1016/0006-291x(69)90495-1. [DOI] [PubMed] [Google Scholar]
  34. Wagner R. R., Cynkin M. A. Glycoprotein biosynthesis. Incorporation of glycosyl groups into endogenous acceptors in a Golgi apparatus-rich fraction of liver. J Biol Chem. 1971 Jan 10;246(1):143–151. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES